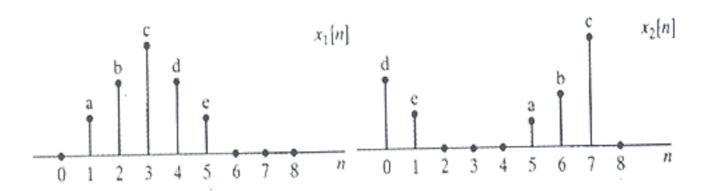
PART-B

(Answer one full question from each module .Each question carries20 marks)

Module 1


11. a) Consider the complex sequence

$$x[n] = e^{j\omega_0 n}$$
 $0 \le n \le N-1$

= otherwise

Find the N point DFT of X(k) of finite length sequence x[n].

b) The two eight point sequences $x_1[n]$ and $x_2[n]$ shown in figure have DFTs $X_1(k)$ and $X_2[k]$. Determine the relationship between $X_1(k)$ and $X_2[k]$

c) Suppose we have two four point sequences x[n] and h[n] as follows

$$x[n] = \cos(\frac{\pi n}{2})$$
. $n=0,1,2,3$

- i. Calculate the four point DFT X [k]
- ii. Calculate the four point DFT H[k]
- iii. Calculate $y[n] = x[n] \odot_4 h[n]$ without doing the circular convolution.

[6+4+10=20 marks]

- 12. a) Draw the signal flow diagram of an 8 point DIT-FFT algorithm.
 - b) Find the DFT of the given sequence x[n] using FFT algorithm. $x[n] = [1\ 1\ 0\ 0\ -1\ -1]$

Milmes & Ajulistimen