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Abstract

Modelling the underlying dynamics of surface wind fluctuation is significant because of its poten-

tial impacts on various fields ranging from agriculture to structural engineering. The most impor-

tant area of application, which recently gained increased attention, is in the energy management

sector, as the wind is widely recognised as a clean, economically viable and eco-friendly source

of electric power. Many research organisations worldwide are working on different aspects of it

with the aim of making wind energy technology more cost-effective and reliable. Wind resource

characterization is one of the important research topics reported by IEA wind for a long term

R&D and it contributes to research needs like site optimisation, design conditions, improvement

of wind forecasting techniques etc. Wind speed modelling and forecasting is an important aspect

of wind power generation and distribution, yet one of the most difficult tasks due to myriads of

factors affecting it. The short-term prediction of one to six hours ahead at intervals of 10 minutes

are important in power dispatching systems. Although many time series analysis (ANN, ARMA,

ARIMA etc.) and meteorological modelling (NWP, Prediktor etc.) techniques are available to

represent the wind speed dynamics, the prediction error could not be reduced significantly com-

pared to the method of persistence. Most of the studies on wind speed prediction reported in the

literature are based on statistical methods or the probabilistic distribution of the wind speed data,

assuming that the underlying dynamics wind speed fluctuations are stochastic in nature. How-

ever, with the advent of chaos theory, it is noted that irregular random-like fluctuations can also

arise from a deterministic system with a low dimensional chaotic character. In other words, since

the chaotic systems are very much sensitive to the initial condition it may exhibit quite complex

behaviour like stochastic systems affected by noise that attributes to the prediction error. Even if

the long-term prediction is impossible for a chaotic system, an accurate short-term prediction is

always possible using a deterministic model. Therefore it is important to explore the source of

these irregular fluctuations. In this work, as a first step, we investigate the deterministic nature of

the underlying dynamics of surface wind fluctuations by carrying out a detailed non-linear time

series analysis on wind speed data measured at various locations across Indian sub-continent.

The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-

dimensional and chaotic across all locations. These results open up the possibility of developing

deterministic models capable of accurate short-term prediction. Interestingly, this is one example

of a naturally occurring time series showing chaotic behaviour as most of the chaotic systems are

confined to laboratories.



Abstract

Motivated by the above observations, we investigated further the possibility of developing de-

terministic prediction models capable of accurate short-term prediction, which is important in

various stages of wind energy management such as wind turbine predictive control and wind

power scheduling. The statistical analysis of the deterministic model predictions, utilising wind

speed measurements at 234 different geographical locations, shows that the predictions are re-

markably accurate up to one hour with normalised root mean square error of less than 0.02 and

reasonably accurate up to three hours with an error of less than 0.06. Comparison of the results

with f-ARIMA model predictions shows that the deterministic models with suitable parameters

are capable of returning improved prediction accuracy and capturing the dynamical variations of

the actual time series more faithfully. These methods are simple and computationally efficient and

require only records of past data for making short-term wind speed forecasts within a practically

tolerable margin of errors.

Wind speed oscillations are known to exhibit varying characteristics at different time scales,

and a range of models from simple persistence schemes to complex physical models has been

used to capture this contrasting behaviour. The recent analysis by our group has shown that a

collection of auto-regressive (AR) models fitted separately on frequency components of wind

speed time series can significantly increase the prediction accuracy indicating the inability of

a single model capturing the entire range of behaviour possibly due to the diverse nature of

dynamical characteristics. Therefore, as a further step, we investigated the diverse dynamical

characteristics across the wide frequency spectrum of wind speed measurements. The results

of the analysis show the variation of stochastic, deterministic and chaotic behaviour apart from

the dimensionality of underlying dynamics as well as the degree of fluctuations. Such an analysis

would be useful for adopting the most suitable model for fluctuations at a specific range of interest

or building hybrid models capturing the entire range of behaviour. It is also demonstrated that a

cluster of deterministic models built upon separate frequency components of a wind speed time

series can enhance the prediction accuracy as much as 80%, on the average, consistently for

predictions up to 12 hours as validated by a statistical analysis of the predictions over a set of

locations. The comparison shows a definite advantage of deterministic prediction models over

autoregressive models. The f-index introduced in this thesis measure the fluctuations of wind

speed over a period and it shows that the observed seasonal variations of prediction errors can be

correlated with changes in the f-index of the component series contributed mostly by the lower

scales of decomposition.
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1
Introduction

Modelling the fluctuations of the Earth’s surface wind has a significant role in under-
standing the dynamics of atmosphere besides its impact on various other fields including
agriculture, navigation, structural engineering calculations and reduction of atmospheric
pollution. The Recent surge of interest in research and development related to wind power
is due to its potential as an alternate source of energy. In this chapter, we give a brief
overview of the significance of the wind speed modelling and forecasting, and non-linear
time series analysis method.

1.1 Surface wind
Surface wind is one of the major factors that plays a crucial role in climate and weather systems of
the earth. It has significant impact on agriculture, navigation, structural engineering calculations
and reduction of atmospheric pollution as well as the economy of the region as a alternate energy
source (Martin et al., 1999; Elliott, 2004; Banta et al., 2011). Wind is caused by air flowing
from high pressure area to low pressure area. Generally the pressure gradient is generated by
the unequal heating of the earth’s surface. The movement of wind is deflected by the rotation
of earth, steering it towards the east or west depending on the hemisphere and the direction of
the current. These factors combine to form various global currents of air such as Trade Winds,
Westerlies and Polar Easterlies.

The Trade Winds blow towards the equator from the north east in the Northern Hemisphere and
from the south east in the Southern Hemisphere. They are caused by hot air rising at the Equator–
which results in an area of low atmospheric pressure along the Equator known as doldrums–and
the consequent movement of air from north and south to take its place. The winds are deflected
towards the west because of the earth’s west-to-east rotation.

The Westerlies are the prevailing winds that occur in both hemispheres between 30 and 60 degrees
latitude. They blow from high pressure areas in the subtropical area in both hemispheres (known
as Horse Latitudes) towards the subpolar low pressure area. Again the rotation of earth steers the
Westerlies towards the northwest in the northern hemisphere and the southwest in the southern
hemisphere.

The Polar Easterlies are the dry, cold prevailing winds that blow from the high-pressure areas
at the poles towards the low-pressure areas in the subpolar region. They blow in the northeast
direction in northern hemisphere and in the southeast direction in southern hemisphere.

1
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FIGURE 1.1: Representation of Global Circulation Model.

Apart from these major air currents there are numerous local winds generated by local conditions
and topography. Common among these are the land and sea breezes caused by the unequal
heating (and cooling in the night) of coastal land and sea water, the mountain valley breezes
generated by the uneven heating of mountain tops and valley surfaces and the kebatic winds
originating from radiational cooling of air atop an elevated plateau making it more dense and
causing it to flow downwards.

Solar energy falls unequally on the earth surface, the largest near equator and smallest at the poles,
is the major driving force of massive movement of air. This atmospheric circulation redistributes
the heat energy by transferring warm air from low to high latitude and cold air from high to
low latitude. Redistribution of heat is well explained by three main convection cells Known
as, Hadley Cell, Ferrel Cell and Polar Cell. Figure. 1.1. shows an idealised view of global
atmospheric circulation on earth.

As shown in the Figure. 1.1, convection cell near to equator between 0◦ (equator) and 30◦ latitude
is the Hadley cell. The air circulation pattern in this cell is, warm air rises above the surface, then
near the tropopause, it diverges towards poles and subsequently by the Coriolis effect turned
towards the equator. The resulting surface wind in Hadley cell is known as Tradewinds. Ferrel
cell found between 30◦, and 60◦ latitude controls the climate types in mid-latitude. About 30◦N
and S latitude the rising air from equator sinks and some part of the descending flow splits towards
poles. Same thing happens about 60◦N, and S latitude, the rising air towards poles splits and some
flows to opposite direction joining the Ferrel cell. This cell is entirely driven by the other two
cells, and the kind of the wind in this cell is known as westerlies. Convection cell located at 60◦

to 90◦ of the equator is termed as Polar cell. Since poles receive much less heat from the sun, cold
air creates a high pressure causing an air flow towards the equator. At around 60◦, due to Coriolis
effect air flow is deflected towards poles causing a weak, irregular prevailing wind commonly
termed as Easterlies. Three circulation cells combined with Coriolis effect, balance the energy
spread between poles and equator and regulate the temperature of the earth.
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1.2 Impact of wind dynamics on various fields
The recent surge in research in the area of wind speed modelling and forecasting is due to the
extensive penetration of wind power generation as an alternate energy source. However, it is
significant in many other fields ranging from agriculture to the structural engineering calculations.
In this section, we discuss some of these applications.

1.2.1 Agriculture

Surface wind plays a vital role in our social development, because of its significant impact on
almost all the fields of progress and civilisation. In the agricultural sector wind speed and di-
rection has predominant effects, both beneficial and detrimental, on crop production. The wind
is favourable, since it helps photosynthesis rates by increasing the supply of carbon dioxide, in-
creases the ethylene production in plants, helps in pollination and so on. The wind can also cause
damages to crops for the reasons like, morphological changes in plants, increased crop water
requirements due to evapotranspiration, uprooting from soil, etc. Navigation is the another field
where wind speed is of high influence.

1.2.2 Navigation

In Aircraft navigation wind speed and direction is used by the pilot for monitoring and controlling
the movement of aircraft. According to the direction which wind is blowing navigators fine-tune
the speed and angle for takeoffs and landings of the craft. If the direction of wind blow is same
as of an airplane, it is known as Tailwind and is regarded as not a favourable condition near
runway as its adverse effect in landing and takeoffs. Although during flight tailwind increases the
speed of aircraft and reduces the time required to reach the destination, in the course of takeoff
airplane may need reduced climb angle and much more runway to get enough lift. In the case of
landing, near the ground, there will be a decrease in tailwind causing an inertial effect by which
increased lift occurs following a temporary floating of the aircraft and dangerously high landing
speeds. For the wind blowing opposite direction of the plane, known as Headwind, is termed as
the favourable condition for takeoffs and landing. Headwind helps aircraft to takeoff with sooner
lift, lower ground speed and use of the shorter runway. Landing into the headwind also reduces
the velocity of aircraft with respect to ground and uses only a short distance to come to a complete
stop. Wind speed is also an important factor in aviation as climb and approach performances of
aircraft are highly related to it. The speed of headwind increases the angle of climb during takeoff
and steepen the angle of approach in the time of landing. The aviation industry uses wind speed
forecasting for a safe and economic operation of aircraft.

1.2.3 Structural engineering

Another application of wind speed is in structural engineering, where the analysis is needed to
measure the effect of the wind on structures. Understanding of wind behaviour is crucial in all
phases of building process. During the design phase itself, inputs from wind engineers are drawn
to avoid hurdles that may occur in design and construction stage of the building. Effects like
up- lift, tilting and overturning of buildings are three primary effects of wind. Blowing wind
causes a load pressure on buildings which can cause damages to the structure with improper
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design. As the speed of the wind varies with height, wind load on a structure depends upon the
height of the wind above ground level. Dimension and design of the structure are determined
by the combined action of external and internal air load acting upon it. A systematic analysis
of meteorological wind data history is needed for identifying different types of the wind storm
and its impact on buildings. Sometimes computer simulation techniques, which incorporates load
points shear force distributions, are also used for preparing a strategic, safe, cost effective and a
feasible design of the proposed structure. Structural engineers also think about the direction of
the wind for a comfortable environment and the performance of ventilation systems.

1.3 Wind energy
Apart from all these, wind plays a crucial role in the economic development of a country as it
is widely recognised as a clean, inexpensive, inextinguishable alternate source of energy. Tra-
ditional energy sources like oil, gas, coal and nuclear are known for its production of many
greenhouse gases and harmful knock-on effects such as emission of radioactive materials into
the environment. According to International Energy Agency, even if 550 million people in the
world will be remaining in the dark without any access to energy, by 2040 total demand of elec-
tricity may increase by more than 70% (IEA, 2015). Energy sector is considered as the largest
and primary source of greenhouse-gas (GHG) emissions which are the heart of global climate
change. An obvious consideration in this scenario is, projecting the need of a well defined strate-
gic policies to at least reduce the environmental impact it may cause. By now an energy sector
transition is underway in many countries and even though coal remains in leading position, the
supportive concern and policies placed renewable resources as the second-largest source of elec-
tricity in worldwide. As a fastest growing economy in the world, to meet the growing demand
for energy (2.8% per year), India is trying to track the opportunities of safe, sustainable and in-
novative energy policies. In connection with our pledge in Climate summit, India is looking for
a keen cleaner path for energy, aiming to reach 175 GW of installed renewable capacity by 2022
(IEAIndia, 2015).

1.3.1 Energy scenario

As a clean and least cost power source, the wind has already established its own position in the
worldwide energy market firmly. Although initial capital cost is very high, in many countries
wind energy is being connected to existing electric power grids along with traditional sources, as
these initial costs balance out rapidly. All over the world, generation of electricity from the wind
has steadily increased over the last few years and at the end of 2013 total installed wind capacity
is 318 GW from 90 countries (GWEC, 2014). According to Global Wind Energy Organisation,
in a moderate scenario it is estimated that, by 2020, total installed capacity of wind will reach
611 GW and by 2030, 964 GW. Moderate scenario assumes the modest situation, such as emis-
sions reductions agreed by governments will be implemented, planned targets for uptake of wind
energy is met in time etc. For the past four years, average global investment only in wind power
equipment is nearly e50 billion and the annual investment in 2013 were e44 billion. Not only in
the current state of affair but also in future wind energy sector also contribute to the employment
rate of a country, as it creates a large number of skilled, semi-skilled and unskilled jobs. Assess-
ment of employment suggests that 14 person/years of employment is created for one megawatt of
newly installed capacity. Under a moderate scenario, GWEC assumes by 2015 employment level
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created through manufacturing, component supply, wind farm development, construction, trans-
portation, etc. will be 824,000 and will approach 1.1 million by 2020. Wind energy is known for
its safe environment beneficial characteristics, and the early deployment of wind power means
early reduction of carbon dioxide emission. Considering the regional context of wind energy sec-
tor, the “Make in India” campaign projects the replacement of services sector with manufacturing
sector as the engine of India’s growth which clearly points out the need of massive amount of En-
ergy to fuel this Indian vision. In India, first wind power development started in the year 1986
and total wind energy installation by 2014 were 21,693 MW providing almost 67% of renewable
energy connected to grid. In a moderate scenario which expects an effective implementation of
existing wind energy policies by the Ministry of New and Renewable Energy, India is expecting
49 GW of installed capacity by 2020 and 125 GW by 2030.In India by 2020 wind industry, antic-
ipates a yearly investment of e6.6 billion, presumes 123,000 employment positions and reduces
82 million tonnes of CO2 emissions. Not only in India, but many countries in all over the world
could manage to operate with ambitious plans and good market prospects to expand wind energy
development (IEA, 2012).

1.3.2 Issues related to wind energy production and distribution

From site optimisation to environmental strategies and planning, deployment of large scale wind
power presents a broad range of challenges that must be addressed for a more cost efficient and
reliable wind system. The International Energy Agency Wind (IEA Wind), coordinates member
countries for a cooperative research on issues affecting wind energy and thereby benefiting the
entire wind energy community. IEA Wind frequently lists the issues as the numbered R&D Tasks
that are shared among members, usually country governments or international organisations, to
participate in collaborative research activities. To direct the efforts on relevant research topics, in
2012 IEA wind reported a long-term R&D needs and categorised these requirements, based on
the expected time for research results, as short-term (0–5 years), mid-term (5–10 years), or long-
term (10–20 years) tasks (IEA, 2013). Exploiting opportunities in strategic areas like resource,
design, operation, integration, and social and environmental impacts can significantly optimise
the performance and cost associated with wind power operation. For a long term R&D, IEA
Wind identified and documented four general research topic to be pursued by the international
wind community, namely, characterising the wind resource, developing next generation wind
power technology, wind integration and increasing the social acceptance of wind energy. The
document is useful for wind community and research organisations in advanced wind energy
technology by preparing their own research agendas.

Wind characterization address the research needs associated with site optimization, operation of
wind turbine and power plant, wake loss and performance & output prediction. As wind en-
ergy production depends heavily on the site location, good site selection is critical concerning
economic and technical feasibility of the project. For a reliable power production system, the
decision of where to be located the wind power plant should address the effect of factors like
landscape parameters, yearly changing weather patterns and wind characteristics. Geographic
information systems (GIS) and Multi-criteria decision making (MCDM) techniques are the com-
monly used ones in determining the suitability of a particular area for a potential wind power
plant. Reducing the performance uncertainties of wind power plants became more crucial as it is
important to know rate of variation of produced power on different lead time hours. Since wind
power production of a turbine is a direct function of wind speed, improve existing wind speed
forecasting model is desirable to bring down energy cost. Technology related research activities
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explore design and control component of a wind turbine along with reliability component of wind
power plants. In on-shore and off-shore wind turbine design conditions are important for future
innovation to reduce cost of energy. The high priority wind turbine characteristics that must be
considered includes control system automation, behavior of the generator, hydrodynamic and
aerodynamic load distribution on turbine blade, land and marine environment etc. Many software
simulation tools, eg. Bladed, QBlade, are also available for assisting design phase of wind tur-
bine in planned environment. Research in rotor architectures emphasis on models with a low cost,
lighter, stiffer, and smarter blades aiming to operate through a wind speed of all range. Advanced
wind turbine control technologies focus on laser-based radar (LIght Detection And Ranging, LI-
DAR) and acoustic radar (SOund Detection And Ranging, SODAR) to detect the wind speed and
direction across the entire rotor disc of a wind turbine. This improved remote sensing measure-
ments can be applied for evaluating wind flow models, creating a wind atlas, power performance
verification and feed forward control of wind turbine. Reliability research concerns developing
components with greater lifespan and ability to withstand failure conditions thereby reducing
operation and maintenance cost. Because wind is highly variable and uncertain, generation and
integration of high wind power has impacts which can be addressed by proper interconnection,
planning, and market operations. Penetration of high wind power on grid may cause some opera-
tional problems such as insufficient transmission capacity and frequency stability,that reduce the
economic value of wind energy system. Wind energy generated in a power plant is first transmit-
ted to a small transmission lines which will transport power to a larger network transmission lines
for travelling across a long distance then again transfer to a small distribution line to deliver elec-
tricity to the destination. Apart from good electricity storage technologies, proper transmission
planning is essential to manage the increased variability and uncertainty associated with wind
resource. Technical research related to the internal grid of the power plant and power electronic
control are crucial for the reason that before feed into the power grid, electricity must be con-
verted into the correct frequency and voltage. The advances in smart grid architecture include
control of integration of heterogeneous systems and devices like distributed energy sources and
storage. One of the most appealing benefit of smart grid technology deployment is enabling con-
sumers as active participants in energy use. Consumers will be allowed to monitor the changes
in grid conditions and act accordingly making efficient use the transmission system. Impression
of non-grid-connected wind power suggest direct use of large-scale wind power output, without
transmitting it to grid. Understanding and resolving issues of social acceptance of wind energy
can be linked to three key dimensions called, socio-political acceptance, community acceptance
and market acceptance. Socio-political acceptance refers to develop methods, tools and policies
for acceptance by key stakeholders and policy makers. Generate insight into the acceptance at
the local level in such a way as to maximize socio-economic benefit and minimize conflicts are
dealt with community acceptance. Market acceptance assess cost driving components and devise
the policies with which market parties adopt and support the energy innovations. Though as a re-
newable energy wind is considered as key solution to reach a sustainable future a moderate level
of adverse impact on the environment is also noted. Policies to mitigate environmental impacts
must reflect the factors including wind turbine recycling procedures and offshore power plant in-
stallation and operation. The overall mission of IEAWind long-term research plan is to encourage
and support the policy and technological development to achieve a smart, reliable, cost-effective
environment-friendly and market favourable wind power system.
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1.3.3 Wind farm - operation and maintenance

In the beginning of the twentieth century itself, the wind had been experimented to utilise as an
alternative energy source. After the 1973 oil crisis, fast but step by step technological advance-
ment in wind energy drove it into new dimensions and re-emerged as one of the most important
sustainable energy sources. While the first generation wind farms consisted of wind turbine ca-
pacity of 50 kW, over the years it has been increased up to an average capacity of 2.5-3 MW.
Conversion of the kinetic energy in the wind into electrical energy is achieved by the aerody-
namic modelling and the theory of electromagnetic induction. While the mathematical models
to describe the aerodynamic forces helps in design processes like deciding the optimal height of
the tower, control system design, shape and the number of blades, etc., properties of the electro-
magnetic induction is used to convert mechanical rotation into electric current. Maximising the
aerodynamic efficiency is the primary objective of wind turbine design and according to Betz’s
law in an ideal wind condition with the help of an infinite number of blades, up to the 59.26%
(0.5926 times) of the power available in the wind can be extracted (Singh et al., 2011). Although
aerodynamic efficiency increases with the number of blades in a wind turbine, for an operational
model, structural and economic consideration limits the blades to only two or three in number
and still be able to extract 50% of the available power. Since Wind velocity is high at higher
altitudes, desired wind turbine tower height is high as possible, and cost consideration restricts it
two to three times the blade length. If the velocity of the wind is Vwindand air density isρ then
mathematically, power Pwind that can be extracted by a wind turbine with power coefficient CP
and swept area A, can be expressed as

Pwind =
1
2

CPρAV 3
wind (1.3.1)

CP represents the efficiency of a wind turbine and usually the values at various wind speeds is
provided by the manufacturer. Aerodynamic force exerted on the blade is resolved into drag and
lift, where the former component is the force parallel to the direction of flow of the air and the
later is the force perpendicular to the direction of relative motion. While horizontal-axis wind
turbine (HAWT) uses lift component to rotate the rotor and vertical-axis wind turbine (VAWT)
extract power by the drag component. Even though both wind turbines are found in use lift
turbine dominates the drag type as it is more efficient in extracting energy per square meter of the
swept area. Another important design consideration is the measures to withstand enormous forces
applied on the turbine blades by extreme winds or gust. Apart from the cut-out velocity above
which turbine will go to a halt state, there are some control strategies for a range of high velocity
wind before cut-out. Pitch-controlled wind turbine keeps a constant rotational rotor speed for a
very high wind velocity until cut-out speed and hence retain a persistent power output . Another
strategy is the stall-controlled turbines, which reduces the energy extraction for high wind speed
range before extreme events. This control and safe operation of wind turbine is obtained by an
anemometer which will send electronic signal to yaw motor for starting and stopping turbine in
accordance with the cut-in and cut-out speed. Prior knowledge of the wind speed is desirable
for an optimum performance of the wind turbine and hence to reduce the maintenance cost. It
is reported that an efficient yaw control is possible even with a very-short-term wind speed and
angle prediction and it is implementable on the real wind turbine hardware (Hure et al., 2015).

A brief explanation of how wind turbine works is shown in Figure. 1.2.
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FIGURE 1.2: Schematic diagram of wind energy production and distribution.

(1) The Wind blows towards the turbine blade and (2) aerodynamic force causes the rotor blade to
spin (3) and through the hub, energy is transferred to a rotating shaft to convert it into rotational
energy. Nacelle is the central part of the turbine which constitutes (4) a gear box: increase the
rotational speed of the shaft and (5) a generator: uses the increased rotational speed to produce
electrical energy by the theory of electromagnetic induction. For the purpose of controlling the
rotors and nacelle (6) anemometer and wind vanes are placed in the back of the nacelle to measure
the wind speed and direction. These measurements are used by the (7) yaw motor to keep the
rotor facing into the wind despite the changes in direction. Yaw motor also controls cut-in up and
cut-out break of the wind turbine. Finally, the generated (8) electricity is transferred through the
cables in wind turbine to a (9) substation. In order to minimise the turbulence between wind tur-
bines in a wind farm, wind turbines are installed in a row at a sufficiently large distance, usually
beyond seven rotor diameter (Vermeer et al., 2003; Meyers et al., 2012). A power collection sys-
tem interconnects the energy generated from the single turbine in a wind farm and at a substation,
this electric current is transformed into high voltage electric power for connection compatibil-
ity with electric power transmission network. Integrating highly variable wind power into the
grid is associated with some operational and technical challenges which include power system
operating cost, power quality, power imbalances, power system dynamics, and impacts on trans-
mission planning (Georgilakis, 2008). Highly intermittent nature of the wind cause an obvious
effect on the wind power production and in turn introduce additional cost overhead. Maintain-
ing the balance between the supply of and demand for electricity in power system grid is one
of the main concerns of utility operators. Retaining the grid stability is a highly sophisticated
task and traditionally is achieved by utility operators with a great deal of experience accumu-
lated over many years which is now being integrated with smart grid technologies. The services
that facilitate and support the continuous flow of electricity so as to balance supply and demand
in a stable grid is known as ancillary services and first introduced by the United States Federal
Energy Regulatory Commission (FERC). Realising the significance of ancillary services in 2013
Central Electricity Regulatory Commission (CERC) of India has prepared a consultation paper
on "Introduction of Ancillary Services in Indian Electricity Market" with the aim of supporting
power quality, reliability, grid security and optimum resource utilisation (CERC, 2013). Prior
knowledge of wind power can also help utility operators in grid planning at different time scales
of interest such as unit-commitment: 1 day to 1 week with 1 h time increments, load-following:
1 h with 5–10 min increments (intra-hour), regulation horizon: 1 min–1 h with 1–5 s increments
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(Georgilakis, 2008). Power imbalances on the grid due to variable wind is a major concern for
transmission system operator (TSO) and is one of the ancillary services specified in the Open
Access Transmission Tariff by FERC Order No. 888 (Wan et al., 2007). Many wind power pre-
diction techniques suitable for different prediction horizon are available in literature and practice
that can be utilised to assists ancillary services and thereby reducing the costs associated with
maintaining grid stability (Wu et al., 2007; Soman et al., 2010; Kaldellis et al., 2011; Costa et al.,
2008; Lei et al., 2009; Wang et al., 2012; Hering et al., 2010). Uneven wind fluctuations affect
the electricity market in devising best bidding strategy with minimum possible risk.In electricity
spot market, expected power production and market prices for a given time period are proposed
by the participants and the electricity spot price settlement is done with the help of an auction
system (Gomes et al., 2012). Most of the electricity markets plan midnight to midnight schedules
one day ahead according to proposals of market participants and any marginal deviation from
schedule will have an adverse impact on wind energy. FERC has devised some energy imbal-
ance pricing rule to keep the system in balance as much as possible. The difference between
predicted and actual generated wind energy is inevitable and the application of advanced wind
energy forecasting techniques can help the utilities to frame a well-defined market bidding plan.
Studies show that with the current forecasting techniques the impact of energy imbalance penalty
on wind plant revenue is 2% and any improvement in wind forecasting accuracy can reduce this
impact of energy deviation penalty. The intermittent nature and the uneven power production of
wind power has a significant impact on grid connected power quality which describe the variabil-
ity of the voltage level. Low-quality power may cause poor performance of equipment, such as
flickering lights, unstable and disrupted power in user end and advanced power electronic systems
are used to address these issues. Integration of wind power to traditional transmission lines is the
another big challenge faced by many countries. In most areas of the world, large amounts of wind
power are generated in remote lowly populated locations where the local consumption is low and
have to transport wind power to high load locations where the population and energy consump-
tions are high. Traditional transmission grid in the remote area is not designed to transmit large
amounts of power over long distances and the high-level exploitation of wind power set some
problems on inter-area connections (Bindner et al., 2002; Glover et al., 2011). With deregulated
power markets, the idea of expanding transmission grid does not seem to work and to avoid pos-
sible grid overload and unreliable services, utilities are forced to shut down wind parks leaving a
potential amount of wind power untapped and causing huge economic loss (Piwko et al., 2005).
Although many economic transmission planning studies such as grid energy storage (Eyer et al.,
2010) have been conducted, these time, labour and cost intensive efforts may not result in much
action (Georgilakis, 2008).

1.4 Wind speed modelling and forecasting
In the aim of getting a clear idea on chronology and evolvement, methodologies underlying state-
of-the-art wind speed forecasting models and their application to power systems operations have
already reviewed and analysed by many researchers. One of the first largest review series of short-
term prediction literature is prepared by ANEMOS (A NExt generation wind resource forecasting
system for the large-scale integration of Onshore and off Shore wind farms), a research group
supported by the Europen Commission (Giebel et al., 2003; Giebel et al., 2007; Kariniotakis et al.,
2006; Landberg et al., 2003). A comprehensive report on reviews and recommendations of wind
power forecasting systems and its integration in operational management tools is prepared by
Argonne National Laboratory (Monteiro et al., 2009). Along with international use cases, hybrid
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methods and its applicability in reducing average forecasting error are well discussed in Cutler et
al., (2008). The investigation done by Costa et al., (2008) pointed out most significant proposals
and developments of the wind power short-term prediction in the history of 30 years together with
a list of unsolved or even unexploited topics. The Canadian Wind Energy Association (CanWEA)
conducted a study on international experiences so as to understand the available techniques and
its performance and cost effectiveness (Snodin, 2006). The business case for short-term wind
forecasting and significance of setting the wind farm for good predictability is noted by Lei et al.,
(2009) and Lerner et al., (2009). Apart from all these some interesting books, book chapters and
summary of the conference series on this topic are also found useful (Lange et al., 2006; Ernst,
2005; Lange et al., 2012; Fox, 2007; Giebel et al., 2008).

Wind speed forecasting is an interdisciplinary research area requiring skills and knowledge from
other branches like meteorology, applied mathematics, artificial intelligence, energy, software en-
gineering, information technology, etc.. High variability behaviour of wind happens on all time
scales is one of the largest challenges of wind power. Forecasting highly variable wind speed
some time ahead, from milliseconds to seconds useful for turbine control and from minutes to
weeks is important for the integration of wind power in the electrical grid (Giebel et al., 2011).
The following section briefly describes the available methods and techniques together with cur-
rent research on wind speed forecasting.

1.4.1 A brief overview of forecasting models

In general methods regarding wind speed forecasting can be broken down into two types of mod-
els: physical models such as Numerical Weather Prediction model (NWP) and statistical models.
The decision of including NWP model is highly depends on prediction horizon since it is reported
that after 3-6 hours NWP outperforms all the other models. In most of the commercial use, Model
Output Statistics (MOS) Method is used to combine statistical methods with a physical method
to post-process the physical method output. Physical considerations of wind speed are used to
obtain the best possible estimate, and statistical techniques are applied to reduce the remaining
error. Wind speed forecasting models are evaluated based on the error measures that may quan-
tify the difference between estimates of modelled outcome and the actual measurements. Some
times statistical association based methods such as Pearson’s correlation coefficient (γ) are use-
ful as it gives the statistical co-variation between the actual and predicted. The oldest statistic to
measure model accuracy is the mean difference (ME) and Landberg et al., (1994) pointed out the
shortcoming of this as a low mean error can also be occurred by averaging negative and positive
errors. Other common statistical evaluation criteria are root mean square error (RMSE) and mean
absolute error (MAE) of forecasts and is proposed as good estimates by Madsen et al., (2005).
Normalised error measures like NRMSE (Normalised RMSE), NMAE (Normalised Mean Ab-
solute Error) is useful for a comparison across different wind farms with different variable time
series (Madsen et al., 2005). The error criterion for optimal prediction parameters are charac-
terised by Nielsen et al., (2003) as "The predicted value of the wind power production should
be close to the average of the real values. The sum of deviations between the predicted value
and real values should be small. The prediction should result in a low cost of the consequences
of prediction errors". Analysing the nature of error growth in terms of the spectrum of frequen-
cies in the measurements gives an insight of the suitability methods with reduced error (Vincent
et al., 2009). Most frequently when assessing the forecasting performance of a proposed model
persistence model, which assumes the future value as the last observed one, is considered as the
baseline model. According to many authors the new reference method (Nielsen et al., 1998), a
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simple modified version of persistence method with a trend towards the mean of the time series
is capable to achieve 10% RMS error improvements over persistence.

1.4.2 Meteorological modelling

Many meteorological organisations have developed mathematically complex and computer in-
tensive numerical weather models in the aim of reproducing the general synoptic characteristics
of the weather over large areas and there by predicting its future values. The Weather Research
and Forecasting (WRF) model is developed by US meteorological departments National Oceanic
and Atmospheric Administration (NOAA) and the National Center for Atmospheric Research
(NCAR) and is used to produce forecasts with a 10 km horizontal resolution and a vertical res-
olution of 80 m. With additional input, cases with specific resolution is also possible in WRF.
One such example is the consideration of planetary boundary layer (PBL) which extends from
the ground to the bottom of where cumulus clouds form. Its boundary keeps varying according
to atmospheric conditions and hence the physical quantities such as flow velocity, temperature,
moisture, etc. in this layer is highly variable. To accommodate all the factors interacting with
PBL we need a set of physical equations and unfortunately, number equations are fewer than the
number of unknowns. Meteorologists addressed these issues with several PBL schemes based on
various assumptions about the PBL and surface interaction and ran these different PBL schemes.
The WRF model depends on two global meteorological models called, Global Forecast System
(GFS) model and North American Mesoscale (NAM) model, for obtaining a set of boundary
and initial conditions that must be given to each PBL scheme. The WRF model accepts input
from both GFS and NAM model and runs each PBL scheme forming an ensemble of forecasts,
which will be then averaged to obtain forecast at a given time. The United Kingdom and Canada
also have a well-known atmospheric model designed for their own forecasters and researchers.
The model developed by the Unite Kingdom is known as United Kingdom Meteorological Office
(UKMO) model or Met Office Unified model, and Model from Canadian Meteorological Centre
(CMC) is Global Environmental Multiscale Model (GEM). GEM is a global model with a res-
olution of 100km, prediction horizon of 10 days and has a 6 hour cycle. GEM has also got a
regional model, which runs 2 times a day with 48hrs ahead prediction and a horizontal resolution
of 15km. The unified model of UK runs 2 times in a day with a model duration of 70 mins and
prediction horizon of 5 days (Snodin, 2006). NWP ensemble forecasting techniques is an im-
portant research area since it tries to confront the chaotic nature of the weather and its effect in
physical models. An NWP model is run more than fifty times with several input conditions and
the output is compared to check the forecast confidence level.As with all developments, it is noted
that repeating NWP many times is a heavy computational process with a high cost. Input condi-
tions for NWP models are usually gathered from a broad range of sources such as meteorological
stations, ad-hoc report from aircraft, maritime traffic and satellite-based observations. Although
prognostic modelling of the dynamics of atmospheric global circulation and forecasting current
state of the atmosphere by system assimilation is efficient in theory, this form of modelling is
extremely computationally intensive and case specific which may result in unreliable output in
a complex geographic area. To realize the transformation between NWP and site-specific ones,
both statistical and physical methods are found in academic research and commercial practice.
Statistical methods assumes a systematic difference between a particular site and NWP model and
is recognized and eliminated by a multiple regression model with combination of meteorological
parameters. Physical model approach aim to increase the resolution of original NWP model with
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the aid of a local version incorporating local thermal effects. Another practical difficulty of mete-
orological model is the exceeding time it takes to integrate and run the system of model equations
of atmospheric circulation reproduction. Mostly there is little value for NWP the prediction as by
the time forecast is delivered prediction horizon becomes history.

1.4.3 Time series modelling for wind speed forecasting

Observation of state of a system made over time is usually termed as time series and a system-
atic approach of time series data analysis extracts the characteristics and statistic of the system.
Methodologies developed for time series analysis is suitable for historical measurements of any
natural system and hence fit to derive a good description of highly intermittent wind speed data.
The use of wind speed predictions as an explanatory variable of direct wind power prediction
is important and the methods suitable for one can be used for the other also. Corresponding to
the prediction horizon wind forecasting can be broadly classified as, very short-term forecast-
ing: From few seconds to 30 minutes ahead, short-term forecasting: From 30 minutes to 6 hours
ahead, medium-term forecasting: From 6 hours to 1 day ahead, and long-term forecasting: From
1 day to 1 week ahead. For developing a predictive model of a very short-term to short-term
forecast length, time series models are suitable (Box et al., 2013). The capability of Gaussian
distribution in explaining random variations in the wind over time is explained by Brown et al.,
(1984), one of the first papers in this field. Along with transformation to a Gaussian distribution
and AR (AutoRegressive) prediction, removal of seasonal and diurnal swings in the AR compo-
nents and prediction interval is also discussed. Persistence method which assumes x(t+n) = x(t)
is widely recognized as the one suitable for short-term prediction method for practical purpose
(Nogaret et al., 1994). Use of Kalman Filter for wind speed prediction and its comparison with
persistence method shows, for 1-min, averaged data with six previous measurements, predic-
tion accuracy in RMSE can be improved up to 10% for the next time step prediction (Bossanyi,
1985). A systematic analysis of de-trended wind speed data with iterative Box-Jenkins method
and central moving average smoothing can achieve 2 hours ahead prediction with reduced RMSE
(Fellows et al., 1990). Wavelet decomposition method has also experimented for exploring its ca-
pability on modelling and prediction of Wind time series measured at different locations. Wavelet
decomposition aid in identifying the wavelet components from the measured time series to form
a multivariate time series matrix. Principal Component Analysis (PCA) on this matrix may pro-
vide a reliable estimate compared to simple linear regression (Hunt et al., 2001). Usefulness of
stochastic models like ARMA and importance of site and month-specific parameters on ARMA
models has also been studied and reportedly outperforms persistence method for 1-hour fore-
cast (Torres et al., 2005; Tantareanu, 1992). Assuming wind speed as a stochastic process after
removing annual and daily periodicities (Balouktsis et al., 1986) modelled measured data with
ARMA and found the Markov Transition Matrices and the coefficients of the ARMA models
are identical independent of location. Other reasonably accurate models of stochastic simulation
which incorporates autocorrelation, non-Gaussian distribution and diurnal nonstationarity with
ARMA is also found in literature (Daniel et al., 1991). The performance of different ARMA
models on same set of wind speed data is studied by Schwartz et al., (2002) and concluded that
training period highly affects the performance of the model. Investigations on the appropriateness
of f-ARIMA (fractional-ARIMA) models for wind speed modelling and prediction manifested a
more accurate day ahead prediction compared with persistence method (Kavasseri et al., 2009).
A Bayesian framework based modelling of wind speed as an AR process with Markov Chain
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Monte Carlo (MCMC) simulated model parameters has also been developed and reported a com-
parable accuracy with persistence method (Miranda et al., 2006). Markov-switching AR model
with time-varying coefficients for modelling and prediction of wind speed is discussed in Pinson
et al., (2008). Autoregressive integrated moving average with proper (p,d,q) values can give the
best performance in modelling short-term behaviour of wind speed and hence accurate prediction
(Palomares-Salas et al., 2009).

1.4.4 Machine learning techniques and hybrid models

Apart from traditional statistical models, Data mining models: extracting knowledge and features
from voluminous of data, and Hybrid models: which combines different modeling approaches,
are also found in use to solve modeling and prediction of wind speed data. One of the important
data mining models is the Artificial Neural Networks (ANN). Dr. Robert Hecht-Nielsen, defines
a neural network as "a computing system made up of a number of simple, highly interconnected
processing elements, which process information by their dynamic state response to external in-
puts" (Caudill, 1987). ANN does not depend on any predetermined mathematical model but it
is designed to learn from its own learning experience and gets better on each trial. Physical
structure of an ANN can be described with two basic components called, processing elements or
neurons and connections or link between neurons. These interconnected neurons are organized
in layers called input, hidden and output layer. Based on how these neurons are connected a
variety of neural network structures, such as Multilayer Perceptrons (MLP), Back Propagation
(BP), Radial Basis Function Networks (RBF) etc., developed for numerous potentially important
applications can be found. One of the fisrt report on use of ANN with Radial Basis Function
(RBF) in predicting wind speed was prepared by Beyer et al., (1994) and they found 10% over
persistence on RMSE for one step prediction of either 1-min or 10-min averages. Application of
ANN in highly accurate estimation of the wind speed at different heights and terrains is reported
(Bechrakis et al., 1998).Possibility of a wind power forecasting model based on recurrent high
order neural networks and its implementation into an advanced control system was experimented
and presented by Kariniotakis et al., (1996). A widely accepted ANN tool for hourly short-term
wind power forecasting upto 3 hours with 5-minute intervals is the Artificial Neural Network
Short-Term Load Forecaster(ANNSTLF), developed by the US Electric Power Research Institute
. Forecasting of strong winds and gusts with neural network classification was experimented with
data measured at Geneva and Sion in Switzerland and concluded that comparing to persistence
its performance is improved 1, 6, 12 and 24 hour horizons (Kretzschmar et al., 2004). A com-
parison of statistical approaches like ARIMA, Moving Averages with Multi-Layered Perceptron
neural network approach and reported significantly improved accuracy for ANN over statistical
models (Campbell et al., 2005). Neural network model training in an auto-regressive manner
using back-propagation and cascade correlation algorithms, on wind speed data measured at two
locations give a satisfactory prediction (More et al., 2003). Comparison of the performances
of three ANN models, adaptive linear element, back propagation, and radial basis function, and
how each model respond to different inputs are investigated by Sfetsos, (2000). Performance
evaluation of each model on different metric pointed out a need of post-processing of outputs
by combining forecasts from different ANN models. Use of grey predictor GM(1,1), another
important data mining model, on wind speed data also gives a reasonable prediction accuracy
(El-Fouly et al., 2006). Support Vector Machine (SVM) is another data mining method which
extract classification and regression rule from the measured time series data in the aim of mod-
eling and prediction. Support Vector Regression (SVR) construct a model by proper mapping of
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data into higher dimensional feature space and utilize this model for predicting the futures val-
ues. Ability of SVR in generating an efficient model for wind speed dynamics and its prediction
accuracy comparison with ANN- MLP is investigated by Mohandes et al., (2004) and reportedly
could produce a favorable output again MLP. Least Square Support Vector Machine(LS-SVM)
model, a modified and much simpler version of SVM, is also has been used for improving the
prediction accuracy of wind speed data. comparison of back propagation neural network and
LSSVM models in wind speed prediction is done by Du et al., (2008) and declared a better per-
formance and accuracy of LSSVM models. Fine tuning LSSVM with the parameters like type of
kernel function, the size of training sample, and the settings of parameters aid LS-SVM to out-
perform the traditional persistence model (Zhou et al., 2011). Fuzzy techniques for time series
prediction is also used for modeling and prediction of wind speed variations (Zhu et al., 2012;
Damousis et al., 2004). Modelling and prediction with fuzzy rules identifies a fuzzy pattern which
specifies a membership degree between 0 and 1 for each data sample. Basic fuzzy models are
classified in three: a regression model based analysis, Box-Jenkins model based analysis, a fuzzy
reasoning (IF-THEN rule) based analyis. While regression model identifies the fuzzy regression
coefficients , Box-Jenkins model uses autocorrelation, autoregression and ARIMA methods, and
fuzzy reasoning identifies the relation between time series data using IF-THEN rule. from wind
farm history data, powerful Fuzzy models can be derived for prediction purpose and these models
are reportedly capable of maintaining a good prediction accuracy. In the aim of increasing wind
speed prediction accuracy of time series models researchers experimented some hybrid models,
which assumes combinational effect of different techniques. Along with a range of methods Dut-
ton et al., (1999) evaluated a linear autoregressive model combined with adaptive fuzzy logic and
could give only a minor improvement over persistence. Sfetsos, in his work (Sfetsos, 2000; Sfet-
sos, 2002) suggested an adaptive network based Fuzzy inference system (). He also compared
linear and non-linear models and concluded that nonlinear models exhibit better performance.
Appropriateness of ANFIS model in different geographical location was investigated by Potter
et al., (2006) and they measured 30% reduction in mean absolute percentage error (MAPE) over
persistence.Model integrating ARIMA and ANN is evaluated on ANN and ARIMA as a sepa-
rate entity. Forecasting is done in three different regions of Mexico and two error metric, mean
square error (MSE) and the mean absolute error (MAE), demonstrated the dominance of hybrid
model (Cadenas et al., 2010).Using some statistical measure for seasonal exponential adjustment
in wind time series and combining this with back-propagation (BP) neural network model gives
a lower mean absolute error than BP alone (Guo et al., 2011). Short-term pattern extraction with
Artificial neural network (ANN) and long term pattern extraction with Markov chain (MC) are
combined by Kani et al., (2011) to develop a new ANN–MC model, with reduced calculation time
and increased prediction accuracy, for a very short-term prediction. Combination Ensemble Em-
pirical Mode Decomposition (EEMD) and the Support Vector Machine (SVM) may decompose
the measured time series into several components and applies SVM for each component. These
respective estimates are reversed into original form and an observable improvement in prediction
accuracy is reported (Hu et al., 2013). Comparison of two hybrid methods Wavelet-LSSVM and
Wavelet-NN on different time horizon is performed and concluded as, much easier and simpler
Wavelet-LSSVM method performs well than Wavelet-NN (De Giorgi et al., 2014). Inorder to
address nonlinearity and uncertainty in wind speed variations artificial neural network (ANN)
and Kalman filter (KF) combination can be used and its forecast comparison with ARIMA model
account a better accuracy (Shukur et al., 2015). In Zhang et al., (2012), authors analyzed wind
speed with the help of three groups of LS-SVM forecasting models and Fuzzy logic. Univariate,
hybrid with ARIMA and multivariate LS-SVM model out is aggregated and defuzzified using an
intelligent-agent-based fuzzy group forecasting model.
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Apart from these numerous research models, some real operational models are also of great
importance. Prediktor (Troen et al., 1990; Landberg et al., 1994) is a short-term wind power
prediction tool developed by Risø National Laboratory, Denmark and is known as the father of
the modern NWP based forecast. Complete idea of Prediktor is to obtain wind speed and di-
rection , address the local effect and determine the power curve. Simulation of large scale flow
is obtained with a numerical weather prediction technique called High Resolution Local Area
Modeling(HIRLAM) and the accommodation of local conditions are achieved by an Wind Atlas
Analysis and Application Program (WAsP) (Troen et al., 1989) tool. An MOS module with atleast
four month wind history is also present to fine-tune the general errors that may occur in any phase
of Prediktor. The Wind Power Prediction Tool (WPPT) is the tool widely used in Denmark since
1994 and has been developed by the Institute for Informatics and Mathematical Modeling (IMM)
of the Technical University. WPPT developed in the aim of predicting the wind power produc-
tion in larger areas by applying statistical methods. Although the tool was designed for multi-step
ahead prediction upto 36 hrs its lack of quality limited its accurate prediction horizon only up to
12 hours ahead. Later version integrated HIRLAM forecasts with WPPT and could obtain useful
forecasts upto 39 hours ahead (Nielsen et al., 1999). WPPT can incorporate different data sources
such as on-line and off-line power production measurements and its aggregations, Multiple NWP
forecast providers etc. The model structure will get complex with available data and the area
of consideration.Risø National Laboratory and IMM jointly developed a highly flexible software
package called Zephyr that combines Prediktor and WPPT to ensure a more accurate forecasts
for all prediction horizon (Giebel et al., 2001). Previento is the forecast system developed at Old-
enburg University, Germany, in the year 2001 to provide power predictions for a larger area such
as covering a whole country (Focken et al., 2001). Its approach is similar to Prediktor and uses
data of the German Weather Service instead of HIRLAM. The model is capable of monitoring
the weather situation and providing an estimation measure of possible error. eWind is another
popular model developed by True Wind Solutions, USA focusing to run in higher resolution. The
system has four basic components, 1) a three-dimensional physics-based NWP model: provides a
high-resolution simulation and forecast of wind, 2) adaptive statistical model: to adjust the output
of physics-based NWP model, 3) plant/wind-turbine output model: defines a fixed or variable (in
accordance with the recent atmospheric data) relationship between the wind turbine and the atmo-
spheric variables. 4) forecast delivery system: sending the forecast information to users through
any of the option available (Bailey et al., 1999). SIPREOLICO is a prediction tool developed by
the University Carlos III, Madrid, Spain, and the transmission system operator Red Electrica de
Espana (REE). The tool is based on statistical techniques on online measurements and is capable
of providing prediction on every hour upto 36 hrs. The types of inputs SIPREOLICO accepts are
HIRLAM output, environmental characteristics of a particular site, both wind speed and power
history and online power measurements. Performance of the tool in predicting the wind power
for the whole of spain is reported as satisfactory (Gonzalez et al., 2004; Sánchez et al., 2002).
The model developed by University College Cork, Ireland in 2004 is known as HONEYMOON
and it uses an ensemble of NWP inorder to account the uncertainty associated with wind speed
(Möhrlen et al., 2005; Jørgensen et al., 2005; Lang et al., 2002; Lang et al., 2006a; Lang et al.,
2006b). A high resolution physical model was developed by TrueWind known as WEFRUC –
Wind Energy Forecast Rapid Update Cycle and is able to use remote sensing atmospheric data
as input (Zack, 2004). LocalPred and RegioPred are the famous tools used in Europe and are
capable to fine tune NWP output in accordance with out of other modules like timeseries model,
power curve model etc. (Martí Perez, 2002). Apart from all these many other operational mod-
els emphasizing specific market and the distribution of wind turbines are also found in many
countries.
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Although many time series analysis and meteorological modelling techniques are available to
abstract the dynamics of wind speed, none of these forecasting methods is capable of significantly
reducing the prediction error compared to the elementary method of persistence (Sfetsos, 2002).
The high fluctuations and variability in wind speed depicts the complex dynamics of the system
that attributes the prediction error and therefore it is important to explore the sources of these
random like fluctuations. Despite the fact that understanding the nature of dynamics whether it is
stochastic or deterministic may help in improving the tools used for prediction, only a few studies
have focused on this direction. The centre of interest of most these studies was only to compare
stochastic versus deterministic time series models not on exploring the nature of wind speed
dynamics. Studies on several time series of wind components and X-band Doppler radar signals
measured over area of the ocean surface have found the presence of a low-dimensional dynamical
attractor in vertically polarized radar reflectivity and the horizontal surface wind speed (Palmer
et al., 1995). They also reported the suitability of deterministic model to achieve a higher short-
term prediction correlation coefficient for winds from radar reflectivity. Ragwitz et al., (2007)
used a locally low-dimensional prediction scheme to analyse local surface wind velocities for
detecting the deterministic structure and reported determinism only in increase of the velocity.
As per their result, although prediction error can not be reduced by using a non-linear model
instead of a linear stochastic one, a significantly high accurate prediction of intermittent gusts is
attainable. There is always a room for new techniques for gaining information and solving this
complex system.

Though the idea of the unpredictable behaviour of deterministic systems was introduced in the
late 1800s by the French mathematician and theoretical physicist Jules Henri Pioncaré, chaos
theory became formalised only with the invention of the high-speed computer in the 1950s.
Repeated iterations of mathematical formulas with the help of high-precision electronic com-
puters led to the important implications of non-linear systems and the inherently unpredictable
nature of dynamical system was first reported by Edward Lorenz as part of his weather simulation
study (Lorenz, 1963). Lorenz noted his equation never settled down to equilibrium and moreover
very small difference in the current state of the system can cause exponential divergence. Even
though the system continued to oscillate in an irregular, aperiodic fashion Lorenz could depict the
butterfly-shaped structure of the chaos by means of a three-dimensional view of a set of solutions.

1.5 Nonlinear time series analysis and prediction
The evolution of almost all the natural systems with respect to time are often non-linear and
coupled with a large number of variables and parameters. The huge number of parameters make
the system very much sensitive which leads to an irregular, unpredictable behaviour. Although
formulating a closed solution is difficult, in mathematics many tools and techniques are available
for dealing with such a highly uncertain non-linear dynamical systems. Time series analysis is
one such technique based on evolution rule, which says the state of a dynamical system follows
the past state and in some case randomly occurring events also affects. The state of a system as
it evolves over time is recorded as a sequence of data points to form a time series and each data
point composed of a set of attributes of the system modelling its behaviour. Time series data can
be discrete, in which time is a discrete variable, or continuous where time is a continuous variable.
More specifically, discrete time series measures values of variables at distinct points in time and
this time series can be represented as [x(t) : t = 1,2,3, ...,N] where t is the time at which state
x(t) is measured, whereas in continuous time series data there will be many time points between
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any two points in time and it is represented as [x(t)] measured over some time intervalT0[0,1].
For a continuous time system to model the underlying dynamics, it will be more feasible to
measure the process an equidistant discrete sequence of observation times. As pointed out by
Jones, (1980) even though the state is measured at a discrete interval, this can be handled very
conveniently by continuous time series models.Time series analysis techniques are also classified
into univariate, multivariate, linear and non-linear. Univariate time series observes the state of
only one variable while for multivariate time series simultaneous measurement of more than
one variable is involved. The principal objective of time series analysis is to obtain descriptive
measures of the system, with these measures analyse and forecast the future values and examine
the possibilities of useful control measures. Linear techniques in time series analysis use the
concept of linear relation on previously measured data points, and for systems showing dynamic
behaviour we assume a non-linear relationship and go for non-linear techniques. Because of its
natural temporal ordering and accountability of possible internal structure in the data, non-linear
time series based models have many applications in many different areas including numerous
dynamical phenomena in nature.

For any dynamical system we usually measure the state of the system x(t) indirectly and for obvi-
ous reasons, for complex systems, it is difficult to understand the dynamics from this single time
series. In such case, underlying behaviour of the system can be explored by analysing structural
characteristics of its time series measurement. Proper reconstruction of the structural changes in
dynamics and characterization, from an observed time series x(t) is the very basic step adopted
for any non-linear time series analysis (Kaplan et al., 1995).For reconstructing a shadow mani-
fold M′ from a single time series x(t) with manifold M, Floris Taken’s (Takens, 1981) used time
lagged observation and presented the first mathematical proof for this. A non-linear dynamical
system with imbalanced but highly complicated steady state behaviour and periodic or almost
periodic oscillation is referred as the chaotic system. Since it comes under non-linear systems,
its behaviour which is very sensitive to the initial condition can effectively be addressed by the
non-linear techniques. For many of the natural phenomena that are chaotic in nature and equa-
tion of motion is not known, characteristics of the underlying dynamics, such as dimensions of
attractors, entropy, Lyapunov exponents etc. can be effectively obtained once we reconstruct the
shadow manifold from the measured time series. Although this reconstructed manifold may not
preserve the exact geometric shape, reconstruction retains the characteristics of dynamics hidden
in original time series.

1.5.1 Phase space methods

For any dynamical system, states of the system evolve through time are represented by phase
space and each point represents the unique state. Phase space is also referred as state space, as the
state of the dynamical system usually measured at discrete interval. It is considered as an alternate
way to view the system activity where a graphical point in phase space is represented by a number
of system variable. Considering a purely deterministic system once its present state is fixed
one can determine its future state and establish the state of the system in a phase space or state
space. Once the states are specified as points in vector space, the dynamics of the corresponding
deterministic system can be studied by studying the dynamics of the corresponding phase space
vector points. In theory, the first-order ordinary differential equation can be used to define a
deterministic dynamical system and it ensures the existence and uniqueness of the trajectories for
certain conditions. A non-deterministic dynamical system is described as the systems with an
infinite number of states and the transition of the state can be governed by some rule. Markov
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processes are the instance of these kinds in which transition probabilities are used as rules to
randomly select the future state. These concepts of infinite states and transition probability limits
its memory, in the sense future state may only depend on the current state not on the past. In
a Markov chain of order m, the present state is represented by the values of the process during
the last m discrete time steps. One can regard a purely deterministic system as a limiting case of
Markov Process where the transition is governed by a deterministic rule occurs with probability
1 and all the others with probability 0.

For a deterministic system with finite dimensional vector space Rm the state of the system at any
time can be specified by x ∈Rm and the nature of underlying dynamics by an m dimensional map
where time is a discrete variable as

xn+1 = F(xn), n ∈ Z (1.5.1)

or by m first-order ordinary differential equations where time is considered as a continuous one.

d
dt

x(t) = f (x(t)), t ∈ R (1.5.2)

Since the system is of manifold M and continuously differentiable with respect to time Eq.1.5.2
is known as flow. Since the right-hand side of Eq.1.5.2 has no dependency on time it is also
referred as autonomous. With x0 or x(0) as initial condition solution of Eq.1.5.2 gives a series
of points xt or x(t) known as the trajectory of dynamical system. This evolution with respect
to time approaches either infinity or stay in a bounded area forever similar to a chaotic system.
For a bounded dissipative dynamical system, the evolution of a wide variety of initial conditions
can be pulled to some subset of phase space which is commonly known as the attractor of the
system. Or in other words "An attractor is a set of states (points in the phase space), invariant
under the dynamics, towards which neighbouring states in a given basin of attraction asymptoti-
cally approach in the course of dynamic evolution" (Attractor, From MathWorld–A Wolfram Web
Resource). The set of points in phase space that lie on a particular attractor only for a short time is
called the basin of attraction of the attractor.Simple examples of attractor are fixed point attractor
and limit cycles. In the case of a simple pendulum, the state of the system may evolve finally into
the centre bottom position which will be the single stable point for any initial condition and is
called a point attractor.

Limit cycle forms an isolated closed trajectory in phase space and all the neighbouring trajectories
evolve either towards or away from the closed loop. As time evolve if the state of the system
converges towards limit cycle then it is known as stable limit cycle and if the trajectory is moving
away from the closed orbits then it is known as unstable limit cycles.

In a non-linear system, the behaviour of the system is described by a non-linear system of equa-
tions, in which a non-linear combination of unknown variables or functions such as variables with
square or higher power, some sort of threshold function etc. are present. In other words, most
of the non-linear time series methods are based on the theory of time evolution of the dynamical
system which can exhibit deterministic chaos. A non-linear dynamic system may exhibit multi-
ple attractors based on the initial conditions and the state of the system may evolve into basins
of attraction of different attractors (Ruelle et al., 1971; Grebogi et al., 1997). The path traced by
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an initial condition forms a pattern in phase space known as strange attractors where the nearby
states on the attractor at one time diverge from each other exponentially at later times. Apciteptly,
as the dynamical and geometrical properties of a deterministic system can be well described in
the phase space, equations of motions can be approximated by phase space description. Such
approximations can be used to understand the geometry of the attractor thereby a deeper under-
standing of the nature of dynamics. For experimental and naturally occurring chaotic dynamical
systems, the equation of motion is usually not known and is only possible to obtain a sequence
of scalar measurements or time series. Proper phase space reconstruction can be achieved by
embedding the scalar time series measurements into higher dimension after finding the good em-
bedding parameters such as embedding dimension m and time lag τ . The classical embedding
theorems promise with appropriate state variables and their respective delay for ideal noise-free
data the reconstructed vectors sn from a measured time series sn are equivalent to phase space
vectors and preserve the characteristics of the attractor. Poincaré surface of sections is another
phase space method turns the continuous time flow into a discrete-time map with the help of a
section and map in phase space. Poincaré section and Poincaré map are used to visualize the
flow in phase space. While Poincaré section identifies a suitable surface in phase space which is
crossed by almost every trajectory and the Poincaré map identifies the points where the trajec-
tory intersects the Poincaré surface in a specified direction. Extracting the information about the
characteristics of the dynamical system from a measured time series is much simpler if there are
some redundancies inside the data. A deterministic system can have a recurrent behaviour in its
original state space such as a simple pendulum having a single point attractor which is trivially
recurrent for all times. With suitable embedding, a typical non-linear dynamic system exhibits a
repetition of trajectory in approximately the same area in phases space known as recurrence and
the recurrence plots visualise times at which a state of a dynamical system recurs. The idea of
recurrence plot has been introduced by Eckmann et al., (1987) and helps in visualising m dimen-
sional phase space trajectory through a two-dimensional representation of its recurrences. Visual
inspection of recurrence plot gives an insight on time series data and embedding space.

1.5.2 Quantitative measure of complexity

Even though the underlying dynamics of the non-linear system is low dimensional and determin-
istic, as it evolve over time, predictability of the future state becomes limited. However, unpre-
dictability never means the absence of order but occurs on account of the exponential separation
of initially nearby trajectories. Chaotic systems are very much sensitive to the initial conditions
and even a very small deviation can cause an exponential decay of correlation functions. As the
system is predominantly periodic and divergence is exponentially fast, quantification of complex-
ity is possible with the proper averaging of growth exponent. This averaged exponent is known
as Lyapunov exponent and is denoted by the symbol λ . Consider two points in state space sn1
and sn2 with distance ‖ sn1− sn2 ‖= δ0� 1, then after ∆n time the distance δ∆n between the two
trajectories is δ∆n =‖ sn1+∆n− sn2+∆n ‖. Then the λ can be calculated from the equation

δ∆n ' δ0eλ∆n, δ∆n� 1, ∆n� 1 (1.5.3)

A positive value of λ indicates, as the system evolves over time, nearby trajectories have diverged
exponentially - signalling the evidence of chaos. The range is 0 < λ < ∞.
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For some dynamical system, the attractor is a stable fixed point and the trajectories approach each
other exponentially very fast resulting in a negative Lyapunov exponent. That means λ < 0 for
a stable fixed point. If the attractor is a stable limit cycle, any two trajectories originate from
the neighbouring point can approach each other very slower than exponentially and in such case
Lyapunov exponent is negative or λ < 0. If the system is purely random or noise process, then
λ = ∞.

1.5.3 Estimation of topological invariants

The evolution of a dynamical system over time can be well described with the quantification
of possibly complicated structures that are hidden in the measured time series. The essential
condition to convince the theory of patterns in the measured data is the significant improvement
in prediction accuracy, and several non-linear prediction algorithms are available for this purpose.
Although predictability is not the sufficient condition to assert the concealed structure in the signal
are real not just fluctuations, the statistically significant and better predictability of non-linear
methods compared to other techniques can be considered as clear evidence for the non-linear
and deterministic structure in it. For a simple deterministic dynamical system represented by
Eq.1.5.1 and Eq.1.5.2, with the knowledge of present state(at some time n or t) all the future
states can be described and definitely there exist some deterministic forecasting function. But in
a real sense, measuring a physical quantity with a hundred percent accuracy is never possible,
and the inaccuracy of the present state will be amplified as the system evolve. For a chaotic
system even though a very small error is amplified exponentially, the rate of divergence is finite
and can have hope for reasonable short-term forecast if we already know the mapping function
F . Unfortunately, in real world system, F is unknown and we may go for assumptions about
its properties. The very simplest prediction algorithm with the minimal assumption, like F is
continuous, searches all past states for the state closest to the current and its future is taken as
the forecast value. In other words, for finding xN+1, given the present one xN , from a list of all
past states xn with n < N find out xn0 which is very close to xN with respect to some norm, then
xN+1 is also very close to xn0+1 and can be taken as the future state. This simplest method is
known as “Lorenz’s method of analogues” (Lorenz, 1969). For most of the dynamical systems
are measured indirectly we may only have scalar measurements

sn = s(xn), n = 1, ...,N (1.5.4)

and s is the unknown measurement function. In such situation equivalent state space vectors sn
can be obtained with phase space reconstruction method. For predicting the scalar measurement
sN+∆n, use sn0+∆n as the forecast where sn0 is the closest to sN in embedding space (Kennel et
al., 1992). In this assumption we just ignore the fact that the measurement is valid for a finite
resolution and is approximated using a discrete quantity. It implies considering only one closest
state in the past is not at all a better solution. For a typical finite resolution size σ consider
all the neighbouring points within the radius of σ in phase space and the average of individual
predictions may give better predictions (Kantz et al., 2003). For a finite resolution parameter ε ,
∆n ahead prediction of sN is done from its neighbourhood Uε(sN) of radius ε . The arithmetic
mean of the individual predictions sn+∆n of all points sn ∈Uε(sN) is the prediction.

ŝN+∆n =
1

|Uε(sN)| ∑
sn∈Uε (sN)

sn+∆n (1.5.5)
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where |Uε(sN)| is the number of elements in the neighbourhood space of radius ε distance. Zeroth
method is the simplest method of prediction of this kind and is well described in (Kantz et al.,
2003).

One of the most striking features of the chaotic attractor is the fractals which refer to the presence
of repeating patterns in every scale. This property is usually termed as self-similarity. For non-
fractal objects like points, lines and space have integer dimensions, 1,2 and 3 respectively, and
for fractals a change in length is always scaled by a fractional power. Many measures like box
counting dimension, entropy dimension, correlation dimension etc. are available to quantify the
complexity of fractals and correlation dimension is the one used in our study. Calculation of
the correlation sum C(ε) is first step for finding the correlation dimension and it uses counts the
number of points in vector space that are separated by a distance less than it measure the mean
probability of closeness of two points in some vector space at two different times and ε .

As the number of data points tends to infinity, for small ε we expect zero distance and can be
explained by the power law, C(ε) ∝ εD where D is the correlation dimension. Correlation sum
from a time series can be calculated with the reconstructed phase space vectors and here the
choice of delay embedding, τ , is very much important as the inappropriate choice of τ may result
in a poor performance of correlation algorithm. Once the phase space sn is reconstructed calculate
correlation sum C(m,ε) for a range of dimension m, look for the enough signs of self-similarity
and if it is present compute correlation dimension. Results of both correlation sum and correlation
dimension can mislead interpret if proper care is not taken. Following the flow of a deterministic
system, we can see temporal correlations because consecutive states of deterministic systems stay
close as system evolve. In fact, the property of closeness of data in time and space is not only
true for the deterministic system but also for the stochastic system and quantitative methods may
fail in proper estimation of measurements like correlation dimension. In other words, temporal
correlation cause some statistical dependency and when the possible pairs of points in vector
space are statistically dependent, the basic form of correlation sum estimator becomes biased in
the direction of very small dimension. A stochastic process with infinite dimensions can also give
a low dimensional estimate in this way and to avoid this Theiler, (1986) suggested to keep out
all the points which are close in time not in geometry. Calculation of correlation sum for close
pairs occurring only after a suitable correlation time will reduce the effect of temporal correlation.
However, some feature a chaotic system can also be imitated by a linear stochastic process or a
series with colour noise. Therefore, one needs to employ techniques such surrogate data test to
eliminate such possibility.





2
Underlying Dynamics of Wind Speed

Fluctuations

Modelling the intermittency of wind speed has got significant relevance on many
fields including the economy of the region as a renewable energy source. Most of
the available modelling techniques assume the temporal fluctuations in the wind
is due to the stochastic nature of the underlying dynamics and is best described
by statistical methods or the probabilistic distribution. The advent of chaos theory
have changed the perception about irregular fluctuations of dynamic systems and
it has demonstrated that random-like fluctuations can also arise from determin-
istic chaotic systems. In this chapter, we have analysed the deterministic nature
of apparent random fluctuations seen in the daily average wind speed with the
help of nonlinear time series analysis tools. Wind speed data measured at nine
typical locations over Indian subcontinent from 2005 to 2015 are used. The val-
ues of significant chaotic quantifiers obtained from the analysis clearly show the
deterministic, low-dimensional and chaotic nature of wind speed dynamics.

2.1 Introduction
Energy and economic growth are considered to be complementary to each other. While energy
contribution can stimulate economic growth in both direct and indirect ways by supporting the
industrialisation phase of a region, economic development can engender increased demand for en-
ergy forcing the authorities to identify and develop new energy technologies. Sustainable energy
resources including wind energy technologies are gaining much attention in recent days since
the traditional non-renewable resources are depleting at a faster rate and very much hazardous
to the environment. As the largest contributor and fastest growing resource among renewables,
wind energy is expected to continue its rapid growth for some decades and in worldwide the in-
ternational wind community is monitoring advancements in any technology with an expectation
of increasing the annual energy capture and driving down the cost of wind energy through R&D
(IEA, 2013). Characterization of the wind resource has already been identified by IEA as one of
the strategic research areas by which remarkable cost reduction and optimal site assessment are
possible. Short-term forecasting of wind is an important aspect of wind resource characteriza-
tion, and an effective representation of the wind resource can improve the forecasting accuracy
resulting in a more precise plant performance.

23
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A number of modelling techniques can be found both in literature and practice in the aim of
improved wind energy acquisition and utilisation (Kavasseri et al., 2009; Elliott, 2004; Finzi et
al., 1984; Celik, 2004). Most of the tools reported for this purpose consider wind speed as a
random process and used statistical methods like autoregressive models and probabilistic distri-
bution function to describe the underlying dynamics (Kamal et al., 1997; Kavasseri et al., 2009;
Hennessey Jr, 1977; Cadenas et al., 2007; Celik, 2004; Mathew et al., 2011). In 1990 Elman,
(1990) introduce the concept of networks with memory which is capable of predicting the future
behaviour from its previous responses. This concept is commonly known as artificial neural net-
works (ANN) and widely used for classification and prediction problems. ANN and its variants
are one of the commonly used methods for making short term wind speed and power predictions
(Mohandes et al., 1998; Monfared et al., 2009; Mabel et al., 2009; Gomes et al., 2012; Beyer
et al., 1994; Bechrakis et al., 1998). Support vector machines are supervised learning techniques
for classification and regression and it identifies the best hyperplane with the maximum margin
between the two classes (Steinwart et al., 2008). Use of SVM for predicting wind speed and
power one step ahead has also been reported (Zhou et al., 2011; Zeng et al., 2011). Various
studies on the effect of hybrid models which combine different forecasting models for predicting
wind speed can also found in the literature (Soman et al., 2010; Liu et al., 2014; Haque et al.,
2013). Despite all the efforts none of the methods performed well enough in comparison with
persistence method which assumes the wind speed are persistent (Sfetsos, 2000). Undoubtedly
highly intermittent nature of wind speed makes the system much difficult to model and exploring
the sources of this random fluctuation can aid in better characterization and modelling of wind
resource.

Most of the reported wind speed modelling techniques assume the system as a stochastic process
because of the presence of highly irregular fluctuations in the data. Since these fluctuations can
also arise from a deterministically chaotic system, it is worth investigating whether the underlying
dynamics is stochastic or deterministic. Palmer et al., (1995) analysed several time series of the
horizontal wind speed and X-band Doppler radar signals measured concurrently over ocean sur-
face for nonlinearity and turned up with the result of the low-dimensional dynamical behaviour
of both the systems. For a limited period, they could also obtain a higher prediction correla-
tion coefficient with a neural network deterministic model. Ragwitz et al., (2007) attempted a
comparison between the stochastic and deterministic model for wind speed time series. Even
though Ragwitz reported no improvement in prediction accuracy by using nonlinear models, they
observed sufficiently great accuracy in predicting wind gusts. Hirata et al., (2008) proposed a
prediction framework for wind direction based on a two-dimensional wind vector representation
and they observed the time series data used for all these studies are too short. The analysis did
by Martin et al., (1999) had used fairly large enough hourly data of wind speed time series mea-
sured over 7 years and expressed it as a sum of the deterministic component and a probabilistic
or stochastic component. The analysis came up with the evidence of strong 1-year, 24-hour and
12-hour periodicity in deterministic components. Theses natural diurnal, yearly and semi-diurnal
periodicities in wind time series are natural earth cycles and have been already reported by Brett
et al., (1991) and Gavaldà et al., (1992) and the presence of a periodic component in the data is a
clear evidence of deterministic nature of the system. Nevertheless, the authors are vague in stat-
ing whether the ostensible random fluctuations are strictly from the stochastic process or arising
out of chaotic underlying dynamics.

Apart from the local topography, earth rotation and solar heating are the major causes of surface
wind blowing on earth and undoubtedly earth revolution is deterministic in nature. Although
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Location State Latitude Longitude
Bhuj Gujarat 23.287 69.67
Ahemadabad Gujarat 23.077 72.634
Bhopal Madhya Pradesh 23.287 77.337
Jabalpur Madhya Pradesh 23.177 80.052
Birsa Munda Airport Jharkhand 23.314 85.321
Coimbatore Tamilnadu 11.031 77.044
Anantapur Andhra Pradesh 14.583 77.633
Akola Maharashtra 20.7 77.033
Indira Gandhi Airport Delhi 28.566 77.103

TABLE 2.1: The geographical locations where wind speed data have been considered for analysis
in this thesis.

many authors have argued solar radiation as a stochastic process and hence the wind can be
modelled better with both deterministic and stochastic factors, recent studies on several other at-
mospheric parameters suggest the possibility of other way round. Kumar et al., (2004) shown the
strong chaotic nature of underlying dynamics of Total Electron Content (TEC), which is strongly
influenced by the solar radiation. Assuming surface wind as a similar parameter Sreelekshmi
et al., (2012) have done a preliminary analysis in this direction using 10 year daily mean wind
speed (DMWS) measured at Thiruvananthapuram, Kerala, India. Their analysis of wind speed
data in Thiruvananthapuram (8.483◦ N,76.950◦ E) using nonlinear time series analysis tools as
implemented in the TISEAN package (Hegger et al., 1999) reveals the possibility of the deter-
ministic but chaotic behaviour of the underlying dynamics of apparent random-like oscillations
of wind speed measurements. Their assessments are based on a single location. As noted ear-
lier, the wind speed dynamics is highly dependent on local topography. To make the affirmation
further stronger, we have done a detailed analysis of DMWS data measured at various locations
in India are the results are reported in this chapter. We have also examined the latitudinal and
longitudinal variation in chaotic behaviour of wind speed in terms of the measurements of some
nonlinear quantifiers like lyapunov exponent, and correlation sum etc.. While the investigation
of latitudinal variation is done by collecting DMWS data from five locations with a fixed latitude
and varying longitude, longitudinal variation is done by collecting DMWS data from five loca-
tions with a fixed longitude and varying latitude. Detailed information of the selected locations
given in Figure. 2.1 is provided in Table 2.1. The R code used to generate the map Figure. 2.1 is
given in Listing 2.1.
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FIGURE 2.1: Location at which Daily Mean Wind Speed (DMWS) data is measured.

library(ggmap)
a=c(11.031,20.7,14.583,28.566,23.287,23.287,23.077,23.314,23.177)
b=c(77.044,77.033,77.633,77.103,77.337,69.670,72.634,85.321,80.052)
mark=as.data.frame(cbind(b,a))
ggmap(get_googlemap(center = c(lon = 81.9629,lat = 22), zoom=5,markers = mark))

LISTING 2.1: The code in R used to produce the map in Fig 2.1.

2.2 Chaotic system
Daily mean wind speed measurements from different locations in India are plotted in Figure. 2.2.
Random like temporal fluctuations are clearly evident in all the data and as we discussed above
these fluctuations can arise not only from a noisy stochastic system but also from a sensitive low-
dimensional deterministic system. Evidence of the chaotic behaviour of the dynamic system are
first reported by Lorenz, (1963) and he well explained how a deterministic system is evolving
into quite complex unpredictable states in the long term. Hence before concluding fluctuations in
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the measured DMWS is purely random a detailed analysis is necessary for exploring the sources
of apparently random behaviour. Under some precise condition measures of complexity and
predictability for characterising the system evolution are good tool to show whether the system
follows a chaotic flow or not.

For any dynamical system time dependence of its states, which are represented by vector points
in geometrical space, can be well described by the equation of motion and it is given by

ẋ≡ dx
dt

= f (x) (2.2.1)

where x(t) is the state vector. For a dissipative system as t → ∞ the trajectories that follow the
system evolution will be attracted to a subset of phase space known as attractor. Characteriza-
tion of the attractor is an excellent technique to obtain the detailed information about properties of
the system under consideration. Some dynamical systems are highly associated with chaotic be-
haviour for its hypersensitivity to initial conditions. ore precisely, trajectories following the states
of the system that are originated from two points which were very close in phase space initially
will deviate from each other in an exponential rate. In a longer period, even though the diverging
trajectories may evolve separately without depending on each other and move forward in an un-
correlated manner, it will restrict themselves within the limits of a sub set of phase space. Chaos
is the bounded aperiodic behaviour in a deterministic system that shows sensitive dependence on
initial conditions (Alligood et al., 1997). In chaotic system, the adjacent trajectories following
the system evolution may spread initially and eventually comes back to remain a bounded region.
As t→ ∞ repeated spreading and folding of trajectories happens confining it in a specific region
in phase space. This complex region into which the states of the system is attracted as time evolve
is known as attractor, and it maintenance a definite geometry. Even though underlying dynamics
of chaotic system are deterministic in nature due to the property of sensitivity to initial condition
predictability is limited to short period. The restriction in long term prediction occurs due to the
unavoidable measurement errors which will be amplified as time goes on and can cause exponen-
tial divergence of predicted trajectory from original one. Before the advent of chaos theory many
chaotic systems producing apparent irregular behaviour were dubbed to be stochastic (Alligood
et al., 1997; Ott, 2002).

2.3 Attractor reconstruction
In many real world situations the dynamical system, as given in Eq. 2.2.1, or the state vector
x(t) may not be known or available but what is accessible will be the measurements of a variable
y(t) equidistant in time i.e. a time series. The main objective in analysing such time series is
to get insight into the underlying dynamical system. The first and foremost step in time series
analysis reconstruct the dynamics of x(t) on the attractor using the methodology known as at-
tractor reconstruction, first suggested by Packard et al., (1980). The attractor generated by the
m−dimensional delay vector

y(t) = (y(t),y(t + τ), · · · ,y(t +(m−1)τ)) (2.3.1)

constructed from y(t) at time interval (delay) τ is topologically equivalent to attractor of the state
vector x(t). The validity of the embedding x(t)→ y(t) guaranteed by the embedding theorem of
Takens, (1981) and its extensions by Sauer et al., (1991) and Sauer et al., (1993) for all values



Chapter 2. Underlying dynamics of wind speed fluctuations 28

0

2

4

6

8

10

12

14

 0  500  1000  1500  2000  2500  3000  3500  4000

W
in

d
 S

p
e
e
d
 (

k
n
o
ts

)

Time (Day)

(a)

0

2

4

6

8

10

12

14

16

 0  500  1000  1500  2000  2500  3000  3500  4000

W
in

d
 S

p
e
e
d
 (

k
n
o
ts

)

Time (Day)

(b)

0

1

2

3

4

5

6

7

8

 0  500  1000  1500  2000  2500  3000  3500  4000

W
in

d
 S

p
e
e
d
 (

k
n
o
ts

)

Time (Day)

(c)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

 0  500  1000  1500  2000  2500  3000  3500  4000

W
in

d
 S

p
e
e
d
 (

k
n
o
ts

)

Time (Day)

(d)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

 0  500  1000  1500  2000  2500  3000  3500  4000

W
in

d
 S

p
e
e
d
 (

k
n
o
ts

)

Time (Day)

(e)

0

5

10

15

20

25

 0  500  1000  1500  2000  2500  3000  3500  4000

W
in

d
 S

p
e
e
d
 (

k
n
o
ts

)

Time (Day)

(f)

0

1

2

3

4

5

6

7

8

9

 0  500  1000  1500  2000  2500  3000  3500  4000

W
in

d
 S

p
e
e
d
 (

k
n
o
ts

) 

Time (Day)

(g)

0

2

4

6

8

10

12

14

 0  500  1000  1500  2000  2500  3000  3500  4000

W
in

d
 S

p
e
e
d
 (

k
n
o
ts

)

Time (Day)

(h)

FIGURE 2.2: Time series of the daily mean wind speed (DMWS) in knots, measured across
Indian subcontinent at locations (a) Bhuj (b) Ahemadabad (c) Jabalpur (d) Birsa Munda Airport
(e) Coimbatore (f) Anantapur (g) Akola (h) Indira Gandhi Airport.
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of delay tau and smooth measurement functions y(t) = h(x(t)) for m > 2D where D is the box-
counting dimension. Hence, the dynamical and geometrical characteristics of the original system
x(t) are preserved the reconstructed space and can be computed from the measured time series
y(t) (Kantz et al., 2004; Ott et al., 1994). The attractor reconstruction depends on two parameters,
the embedding dimension m and delay τ .

2.4 Nonlinear time series analysis
A time series is the measurements of a time dependent variable at equal interval in time. Here
we consider daily mean wind speed data, not the wind speeds measured at regular daily intervals.
This averaging process contributes an additional additive noise apart from the measurement noise
with zero mean and delta correlation. As a first step, we reduced the effect of the noise using the
method proposed by Schreiber, (1993). Despite the apparent random-like fluctuations of the
DMWS time series the plots in Figure. 2.2 shows strong annual variations. This was further
confirmed by the space-time separation plot of each time series. A space-time separation plot
depicts the relative separation in time of a pair points on a trajectory along the horizontal axis
and their separation in space along the vertical axis. A space-time separation plot is useful in
identifying the temporal correlations in a time series (Provenzale et al., 1992). Typical space-
time separation plots are given in Figure. 2.3. In an epoch analysis, on each time series the
modulation effect annual variations was reduced by deducting from each of the data points which
are 365 days apart their average value (Kumar et al., 2004). The variation of 28 days arising from
lunar influence was evident from the resulting time series and hence the procedure was repeated
for each time series to reduce the effect of 28-day variations. Further analysis was carried out on
each of the resultant de-noised and detrended time series retaining temporal variations. The plots
of the de-noised and detrended time series of eight locations are given in Figure. 2.4 and their
space-time speration plots are given in Figure. 2.5.

The first step in the analysis of the de-noised data is the reconstruction of the attractor as per the
method discussed in the previous section for which one needs to estimate the optimum embedding
parameters - delay τ and embedding dimension m. The choice of τ and m crucial in deriving
inferences when the time series is the result of the experimental measurements. Selection of
small values of delay shall lead to highly correlated vectors y(t) leading to unduly larger values
for the correlation dimension whereas inappropriately large values may lead to fairly uncorrelated
components resulting in data randomly distributed in the embedding space (Kantz et al., 2004).
Proper choice of the time delay is, therefore, important and a first guess of a suitable delay may
be obtained from The autocorrelation function of the sample data yi given by

ρ(τ) =
∑i(yi− ȳ)(yi+τ − ȳ)

∑i(yi− ȳ)2 , (2.4.1)

where ȳ is the sample mean, can be utilised to estimate an approximate value of τ (Kantz et
al., 2004). A better method to fix the value the delay τ is to calculate the time-delayed mutual
information suggested by Fraser et al., (1986). This method also takes into account of the non-
linear correlations.

In this method, a quantity called average mutual information is computed for various delays as a
measure of the predictability of y(t + τ) given y(τ).
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FIGURE 2.3: Space-time separation plot for the time series measured at locations (a) Bhuj (b)
Ahemadabad (c) Jabalpur (d) Birsa Munda Airport (e) Coimbatore (f) Anantapur (g) Akola (h)
Indira Gandhi Airport.
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FIGURE 2.4: Time series of the daily mean wind speed (DMWS) in knots, measured across
Indian subcontinent at locations (a) Bhuj (b) Ahemadabad (c) Jabalpur (d) Birsa Munda Airport.
(e) Coimbatore (f) Anantapur (g) Akola (h) Indira Gandhi Airport.
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FIGURE 2.5: Space-time separation plot for the time series measured at locations (a) Bhuj (b)
Ahemadabad (c) Jabalpur (d) Birsa Munda Airport (e) Coimbatore (f) Anantapur (g) Akola (h)
Indira Gandhi Airport.
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For a give delay, the mutual information I(τ) for a given delay τ is calculated by treating the
sequences (yi) and (yi+τ) as values of random variables X and Y according to the formula

I(τ) = ∑
y∈Y

∑
x∈X

p(x,y) log2

(
p(x,y)

p(x)p(y)

)
. (2.4.2)

Here, p(x,y) is the joint probability mass function of X and Y with marginal p(x) and p(y). The
probabilities can be estimated by constructing a histogram of the data points. The average mutual
information of a time series y(t) is computed for various values of the delay τ as a measure of
the predictability of y(t + τ) given y(τ). The value of the average mutual information where its
plot against increasing values of delay τ exhibits a marked minimum can be good estimate of the
optimal value of the delay parameter τ. The average mutual information DMWS data indicates
τ = 1 can be a good choice for all the locations under study. Typical plots the average mutual
information eight different locations are given in Figure. 2.6. The plots of other locations also
show similar features. We would like to emphasise that the product mτ is more important than
values of m and τ independently. The precise knowledge of m is only required to estimate the
dynamics with minimal computational effort (Kantz et al., 2004).

According to Kantz et al., (2004) the value of embedding dimension m, it should be large enough
for the attractor to fully unfold in the embedding space. However, a value that is too large may
cause the various algorithms to underperform (Kantz et al., 2004). Kennel et al., (1992) proposed
a practical method to choose the right value of the embedding dimension m by calculating the
fraction of false neighbours as a function of m.

False neighbours arise due to the crossing of trajectories when the attractor can not unfold its true
geometry when the value of m is not large enough as a result of projection onto a small dimen-
sional space. To estimate a suitable value for the m fraction of false neighbours are computed
in progressively higher dimension until the difference becomes negligible. The first value of m
corresponding to the first minimum of the fraction of false neighbours indicates a suitable value
for the embedding dimension. We have computed the fraction of false neighbours of DMWS data
all locations considered, and plots of eight of them are given in Figure. 2.7. It can be seen that
values of m > 13 (in same case m > 12) the fraction of false neighbours become extremely small.
The value m = 14 can be selected safely in all these locations. This shows preliminary indication
that underlying dynamics is low dimensional in character across the locations.

The delay representation of the time series in four locations with m = 14 and τ = 1 are given in
Figure. 2.8. The definite structure in these figures is an indication of the deterministic nature of
the underlying dynamics. The similar pattern is observed in other locations as well.

A typical feature of a chaotic attractor is its self-similarity. Various dimension estimates, such
as the box-counting dimension, the Hausdorff dimension etc., were introduced in the literature
to quantify the structure of a chaotic attractor. All these quantities of dimension are the general-
isation of the Euclidean definition of dimension to account the self-similar character of chaotic
attractors. The dimension estimate of a chaotic attractor need not be an integer. Among all these
most popular in literature is the correlation dimension introduced by Grassberger et al., (1983).
The correlation integral C(ε), is the probability that a pair of points chosen randomly on the at-
tractor is separated by a distance less than ε . It is found that C(ε) ∝ εD2 as ε→ 0. Therefore, the
correlation dimension can be computed from the slope of the curve of lnC(ε) versus ln(ε) given
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FIGURE 2.6: Mutual information of the time series of the DMWS data measured at (a) Bhuj (b)
Ahemadabad (c) Jabalpur (d) Birsa Munda Airport (e) Coimbatore (f) Anantapur (g) Akola (h)
Indira Gandhi Airport.
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FIGURE 2.7: The fraction of false nearest neighbours as a function of the embedding dimension
m for the DMWS data measured at (a) Bhuj (b) Ahemadabad (c) Jabalpur (d) Birsa Munda Airport
(e) Coimbatore (f) Anantapur (g) Akola (h) Indira Gandhi Airport.
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FIGURE 2.8: The delay representation of the detrended time series (a) Bhuj (b) Ahemadabad (c)
Jabalpur (d) Indira Gandhi Airport.

by

D2 = lim
ε→0

d lnC(ε)

d lnε
. (2.4.3)

For a single time series and N data points of m-dimensional delay vectors yi, the correlation
integral C(ε) is approximated by the correlation sum C(ε,m) given by Kantz et al., (2004)

C(ε,m) =
2

N(N−1)

N

∑
i=1

N

∑
j=i+1

Θ(ε−‖yi− y j‖), (2.4.4)

for sufficiently large N, where Θ(a) = 1 if a > 0, Θ(a) = 0 if a≤ 0. In practice the local slopes

D2(ε,m) =
d lnC(ε,m)

d lnε
(2.4.5)

are computed and plots them as a function of ε for various m; the value corresponding to a plateau
in the curves is estimated as identified as an approximate value of D2.

However, only the spatial closeness of points should be accounted for in Eq. 2.4.5 whereas in
some cases, it can be affected by the temporal closeness of points as well. To avoid this points
which are closer in time by less than a Theiler window ω , which is approximately equal to the
product of the time delay and the embedding dimension, should be excluded from the computa-
tion of the correlation sum (Theiler, 1986). According to Hegger et al., (1999) the value of ω

should be chosen generously.
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FIGURE 2.9: The local slopes D2(ε,m) for the de-noised and detrended time series of DMWS at
(a) Jabalpur (b) Coimbatore (c) Anantapur and (d) Akola. The values of the correlation dimension
are given in Table 2.2.

Location Latitude Longitude Correlation dimension
(degree) (degree)

Bhuj 23.287 69.670 2.2488 ± 0.0092
Ahemadabad 23.077 72.634 5.1174 ± 0.0587
Bhopal 23.287 77.337 2.8775 ± 0.0579
Jabalpur 23.177 80.052 4.1087 ± 0.0265
Birsa Munda Airport 23.314 85.321 4.7908 ± 0.0331
Coimbatore 1.031 77.044 4.8001 ± 0.0213
Anantapur 14.583 77.633 1.0685 ± 0.0071
Akola 20.700 77.033 1.6936 ± 0.0116
Indira Gandhi Airport 28.566 77.103 5.9420 ± 0.1863

TABLE 2.2: The estimated values of the correlation dimension at various locations. The values
appear to depend more on the local topography rather than geographical location.

The typical plots of the local slopes D2(ε,m) is given in Figure. 2.9. We have calculated the
correlation dimension of the DMWS data at all locations and is given in Table 2.2. The wind dy-
namics may be affected myriads of factors, but the estimated values of the correlation dimension
show that the eventual behaviour characterised by the attractor is low dimensional.

The most striking feature of a chaotic system is its sensitivity to initial conditions. Therefore the
trajectories starting from neighbouring initial conditions diverge exponentially as time passes.
The average rate of divergence of nearby trajectories is quantified by what known as Lyapunov
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Location Latitude Longitude Lyapunov exponent
(degree) (degree)

Bhuj 23.287 69.670 0.0434 ± 0.0007
Ahemadabad 23.077 72.634 0.0434 ± 0.0007
Bhopal 23.287 77.337 0.0642 ± 0.0016
Jabalpur 23.177 80.052 0.0675 ± 0.0018
Birsa Munda Airport 23.314 85.321 0.0826 ± 0.0022
Coimbatore 1.031 77.044 0.0984 ± 0.0013
Anantapur 14.583 77.633 0.0778 ± 0.0010
Akola 20.700 77.033 0.0889 ± 0.0011
Indira Gandhi Airport 28.566 77.103 0.0742 ± 0.0015

TABLE 2.3: The estimated values of the maximum Lyapunov Exponent at various locations. The
values do not vary significantly across geographical locations.

exponent. Positive Lyapunov exponent is a striking evidence chaotic behaviour of system (Ott,
2002).

The growth of the divergence n δ (t) between two neighbour trajectories is quantified by the
maximum Lyapunov exponent λ , so that ‖δ (t)|= ‖δ (0)‖eλ t and hence

λ = lim
t→∞

1
t

ln
‖δ (t)‖
‖δ (0)‖

. (2.4.6)

The maximum Lyapunov exponent λ can be estimated by plotting lnδ (t) versus t, which should
fall nearly in a straight line, the slope of which then gives an estimate of λ . Lyapunov exponents
have preserved delay reconstruction as they are invariant under smooth transformations of the
attractor, and hence they can be estimated from a time series. There are several algorithms for
estimating the maximal Lyapunov exponent from time series. Kantz algorithm (Kantz, 1994;
Kantz et al., 2004) is popular in the literature which starts with computing the sum

S(∆n) =

1
N

N

∑
n0=1

ln

(
1

‖U(yn0
)‖ ∑

yn∈U(yn0)

∥∥∥yn0+∆n− yn+∆n

∥∥∥) (2.4.7)

for a point yn0
of the time series in the embedded space and over a neighbourhood U(yn0

) of yn0
with diameter ε .

If the plot of S(∆n) versus ∆n is linear over small ∆n, for a reasonable range of ε , and all have
identical slope for sufficiently large values of the embedding dimension m, then that slope can be
taken as an estimate of the maximum Lyapunov exponent (Kantz, 1994; Kantz et al., 2004).

The curves of S(∆n) for m = 14,15,164 for various locations are given in Figure. 2.10. The
estimated values of the maximum Lyapunov exponent are given in Table 2.3. The positive values
of the maximum Lyapunov exponents show the underlying dynamics of wind speed variations in
all these locations are chaotic in nature.

Many characteristics of a chaotic system are also mimicked by a color noise time series. Pavlos et
al., (1992) have noted that phase randomization of a chaotic signal can destroy its profile whereas
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FIGURE 2.10: The curve of S(δn) for various embedding dimensions m . The maximum Lya-
punov exponent of the detrended time series is the slope of the dashed line. (a) Bhuj (b) Ahe-
madabad (c) Jabalpur (d) Birsa Munda Airport (e) Coimbatore (f) Anantapur (g) Akola (h) Indira
Gandhi Airport.
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colour noise time series preserve its profile. We have compared the local slopes of logarithm
D2(ε,m) of the correlation sum original time series of each location and compared with its phase
randomised time series. The phase randomised time series is obtained by obtaining the Fourier
series representation original and reconstructing the time series after adding random phase dis-
tribution. Essentially we obtained plots like in Fig.11 in Reference (Sreelekshmi et al., 2012).
In each location, the chaotic profile of the time series was destroyed by phase randomization
indicating the deterministic nature the given time series.

2.5 Surrogate data test
Stochastic systems driven by a linear Gaussian process distorted by some nonlinear process might
also exhibit many features of a chaotic system. The main objective of surrogate data test is to
ascertain that the complex behaviour exhibit by a time series is not stochastic. We validate further
that the results reported in the previous section were not arisen from a linear stochastic process
by carrying out surrogate data test on DMWS data at all locations considered.

The method of surrogate data has been widely used for discriminating if the source of apparent
random fluctuations in a time series is deterministic or stochastic (Theiler et al., 1992). It is a
statistical test to formally reject the hypothesis that the observed time series arose from a linear
noise process. The null hypothesis is first formulated that the observed time series is a random
process and then an ensemble of random numbers, called surrogate data, consistent with the null
hypothesis and otherwise similar to the original data were generated. Then one proceeds to test
if a discriminating statistic such as correlation dimension or Lyapunov exponent computed from
the surrogate data is significantly different from that of the original data. The null hypothesis is
rejected if they significantly different.

For each time series of the DMWS measurements, we generated 40 surrogates by the Ampli-
tude Adjusted Fourier Transform method proposed by Schreiber et al., (1996). The surrogates
preserve the amplitude distribution, power spectrum and autocorrelation of the original DMWS-
data, so that they can be treated as what the realisations satisfying the null hypothesis. To test null
hypothesis we have employed both geometrical and dynamical characteristics such as the frac-
tion of false nearest neighbours, the local slopes of the correlation sums and the curves of S(∆n).
The above characteristics are calculated for the data, both original and the surrogate, and the null
hypothesis is accepted or rejected depending on the value of the significance of the difference
given by Mitschke et al., (1993) and Pavlos et al., (1999)

S =
µ−µorig

σ
(2.5.1)

where µ and σ are the mean and standard deviation of the characteristic computed from the
surrogates and µorig is the mean of the characteristic of the original data. It is estimated that we
may reject the null hypothesis with 95% confidence level if S > 2. In other words if S > 2 the
observed time series is not a realisation of a linear Gaussian stochastic process with probability
0.95 or more (Pavlos et al., 1999).

In Figure. 2.11 plotted the mean values of the fraction of false nearest neighbours of all surro-
gates and values one standard deviation away from the mean along that of the original data. The
difference between the original data and the surrogates is evident in these figures. The signifi-
cance of difference S of the data is plotted in Figure. 2.12. It can be noted that the values of S are
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FIGURE 2.11: The mean values of the fraction of false nearest neighbours of the surrogates with
standard deviation.(a) Bhuj (b) Ahemadabad (c) Jabalpur (d) Birsa Munda Airport (e) Coimbatore
(f) Anantapur (g) Akola (h) Indira Gandhi Airport.



Chapter 2. Underlying dynamics of wind speed fluctuations 42

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7  8  9

S

Embedding Dimension

2

Coimbatore

Akola

Anantapur

Bhopal

Delhi

Bhuj

Ahemadabad

Jabalpur

Birsa Munda Airport

FIGURE 2.12: Plot of the significance of difference S versus m for different locations

remarkably higher than 2 for almost the entire range of values of m considered. Therefore, we
can safely reject the null hypothesis.

Next, we compare the original data with its surrogates with S(∆n) of Equation. 2.4.7 as the test
statistic. Figure. 2.13 shows the curves of S(∆n), of the surrogates with those of the original data
with delay τ = 1 Theiler window ω = 25 and embedding dimension m = 14. A strong difference
between the values of S(∆n) corresponding to the original data and the surrogates is evident in all
the locations. The significance of difference S computed for all locations as shown in Figure. 2.14
is much above 2 for all∆n ≤ 45 and hence we can reject the null hypothesis with 95% confidence
level.
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FIGURE 2.13: The mean values of S(∆) of the surrogates with standard deviation.(a) Bhuj (b)
Ahemadabad (c) Jabalpur (d) Birsa Munda Airport (e) Coimbatore (f) Anantapur (g) Akola (h)
Indira Gandhi Airport.
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FIGURE 2.14: Plot of the significance of difference S versus ∆n for different locations

In conclusion, we can reject the null hypothesis with 95% confidence level and infer that the
DMWS-data does not originate from a linear Gaussian process based on the results of these series
of statistical tests comparing the DMWS-data with its surrogates using both configurational and
dynamical characteristics as the test statistic. These evidences strongly indicate that the results
reported in the previous section are not an artefact of a stochastic system but of a system which is
indeed deterministic with a low dimensional chaotic attractor. In the next chapter, we demonstrate
that deterministic prediction tools can remarkably enhance the accuracy of the prediction which
again is an evidence of the deterministic character of the wind speed data.

The long-term predictions of a deterministic but chaotic time series are prone to errors due to
the sensitivity of the initial conditions. However, short-term predictions can be made with fairly
good accuracy by carefully chosen methods adapted to the data. This will be investigated in the
next chapter.

In a preliminary study by Sreelekshmi et al., (2012) using wind speed data from a single location
indicated that apparent random-like fluctuations of wind speed data are deterministic. In this
chapter we confirm their observations that the underlying dynamics of weed speed fluctuations is
deterministic, low-dimensional and chaotic by carrying out a detailed analysis of the daily mean
wind speed measured at 9 locations across length and breadth of the Indian subcontinent for a
period of more than 10 year using tools of nonlinear time series analysis. The results could have
remarkable advantage power management in a wind farm.



3
Deterministic Prediction of Surface

Wind Speed Variations

Accurate prediction of wind speed is an important aspect of various tasks related to wind
energy management such as wind turbine predictive control and wind power scheduling.
The most typical characteristic of wind speed data is its persistent temporal variations.
Most of the techniques reported in the literature for prediction of wind speed and power
are based on statistical methods or probabilistic distribution of wind speed data. In this
chapter we demonstrate that deterministic forecasting methods can make accurate short
term predictions of wind speed using past data, at locations where the wind dynamics
exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 hour with a
normalised RMS error of less than 0.02 and reasonably accurate up to 3 hours with error
of less than 0.06. Repeated application of these methods at 234 different geographical lo-
cations for predicting wind speeds at 30 days intervals for 3 years reveals that the accuracy
of prediction is more or less the same across all locations and time periods. Comparison
of the results with f-ARIMA model predictions shows that the deterministic models with
suitable parameters are capable of returning improved prediction accuracy and capturing
the dynamical variations of the actual time series more faithfully. These methods are sim-
ple and computationally efficient and require only records of past data for making short
term wind speed forecasts within practically tolerable margin of errors.

3.1 Introduction
Wind is widely recognised as a clean, economically viable and eco-friendly source of electric
power. Unlike power produced from coal or nuclear energy, wind power production is safe for
the environment since it does not produce any greenhouse gases or harmful by-products. Wind is
produced by the uneven heating of earth’s surface by the sun and is therefore an inextinguishable
source of energy. The generation of wind power has increased steadily over the last few years all
over the world and as of 2011 the world wide installed capacity of wind power stands at 237 GW.
It is estimated that, by 2020, more than 12% of the total demand for electricity could be met from
wind energy resources (GWEC, 2012).

Nowadays in many countries, wind energy is being connected to existing electric power grids
along with traditional sources. Wind-powered electricity must be used as soon as it enters the

45
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grid, and to determine the additional amount of power to order from traditional sources to meet
the demand at the grid, it is important to be able to predict wind power to the order of several
minutes to a few hours in advance (Hering et al., 2010). Predictions of wind power, of the order
of a couple of hours to a day ahead, are also crucial in liberalised electricity markets where
expected power production and market prices are used in devising best bidding strategy with
minimum possible risk (Gomes et al., 2012). Short term predictions, ranging from seconds to
a few minutes, are useful in operation control of wind turbines and improvement of the power
quality of wind farms (Wang et al., 2012).

It is clear from the above discussion that predicting wind power, in the range of at least a few
hours ahead, is important both for optimising the performance of wind turbines and for maintain-
ing a cost-effective power distribution system. Wind power is a function of wind speed, so an
accurate prediction of wind speed leads to improved predictions of wind power in a given wind
farm. For a range of wind speeds, the amount of wind energy produced from a wind turbine is
proportional to the cube of wind speed, so any small improvement in short term predictions of
wind speed can significantly improve predictions of wind power (Hering et al., 2010). However,
with its dependence on topography, climate, seasonal changes, temperature, pressure and a host
of other factors and its highly variable and random nature, wind speed is one of the most difficult
meteorological parameters to predict. The literature on the various methods of predicting wind
speed has grown extensively in recent years, especially in the wake of large scale deployment of
wind farms across the globe.

The simplest among the prediction schemes for wind speed is the method of persistence which
is based on the assumption that over very small time intervals wind speed does not change ap-
preciably. Its usage is very limited, but is still used in the industry for making very short term
predictions (Soman et al., 2010). The physical models, which utilise data of various atmospheric
parameters to build up complex mathematical models, furnish another classical way to forecast
wind speed. They are useful in identifying recurring patterns and making long term predictions
when weather conditions are stable, but the prohibitive computational volume involved in solving
such models renders them unreliable for short term predictions (Potter et al., 2006; Candy et al.,
2009). Models which use statistical methods for wind speed predictions are also popular in the
literature. They include moving average models such as ARMA, ARIMA and its variants fitted
to the time series of wind speed (Kamal et al., 1997; Cadenas et al., 2007; Kavasseri et al., 2009)
and models based on probability distribution of wind speed (Hennessey Jr, 1977; Celik, 2004;
Mathew et al., 2011; Jiang et al., 2013). These models are fairly good in very short term predic-
tions, but do not improve significantly on prediction error compared to the elementary method of
persistence. Models based on artificial neural networks, which emulate the parallel distributed
processing of human nervous system to adapt by learning from past data, have also been devel-
oped by many researchers for making short term predictions of wind speed and power (Mohandes
et al., 1998; Cadenas et al., 2007; Bilgili et al., 2007; Monfared et al., 2009). In general, these
models outperform the time series models in short term predictions, but their performance edge
is not maintained across all locations universally (Soman et al., 2010). Recently researchers
have also begun to use hybrid models, which combine different approaches for better forecast-
ing results, such as mixing physical and statistical models or short-term and medium-term models
(Soman et al., 2010; Liu et al., 2014; Haque et al., 2013). The central idea of physical approach is
to incorporate the physical considerations of local topography into the numerical weather predic-
tion scheme by modelling the local wind profile possibly considering the atmospheric stability.
For example, Cassola et al., (2012) use Kalman filtering technique applied to the output of a
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FIGURE 3.1: Time series of wind speed at location given by Latitude: 34.98420, Longitude:
-104.03971 at 80 metres.

numerical weather prediction model to improve the accuracy of wind speed forecasts and wind
energy output predictions significantly.

As a matter of fact, since the occurrence of wind is highly uncertain in time and space, no single
technique can be used universally across all locations and time scales for predicting wind speed,
and there is always scope for new methods. In a previous work (Sreelekshmi et al., 2012) we
had carried out a detailed analysis of the time series of daily mean wind speed at Thiruvanantha-
puram, India, which revealed strong evidences for the existence of an underlying system which
is deterministic, low-dimensional and chaotic. This means that the apparent random fluctuations
found in wind speed data could originate from the chaotic dynamics of the underlying system,
and not necessarily due to the system being stochastic as assumed in most of the aforementioned
prediction theories, and this could also explain why wind speed predictions becomes erroneous
beyond a certain time limit. However, provided wind speed dynamics is chaotic in a given lo-
cation, we can use existing non-linear prediction schemes developed for chaotic time series to
make more accurate short term predictions about wind speed. In this work we apply the meth-
ods of non-linear dynamics for forecasting wind speeds at various locations to get fairly accurate
predictions up to 3 hours. For the analysis we have used the wind speed data of 10 minutes reso-
lution of the period from January 2004 to January 2007 for 234 locations available from National
Renewable Energy Laboratory (http://www.nrel.gov), USA.

3.2 Analysis of the data
Figure. 3.1 shows a plot of part of the wind speed data at location given by Latitude: 34.98420,
Longitude: -104.03971 at 80 metres. We start with a detailed analysis of the underlying dynamics
of wind speed data from this particular site and then move on to other locations. The irregular,
random character of the data evident in the figure is typical of systems which are stochastic, but
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FIGURE 3.2: The Space time separation plot for the time series for m = 14 and τ = 85. Each
point in the plot represents a pair of points on the trajectory with their relative separation in time
along the horizontal axis and separation in space along the vertical axis. The diurnal variations
are evident in this figure.

as we have shown previously (Sreelekshmi et al., 2012), these fluctuations could also arise out of
an underlying system which is deterministic, low-dimensional and chaotic. Since the stochastic
versus deterministic character of wind speed has to be ascertained on a per location basis due
to the highly uncertain nature of wind from location to location, we will now carry out a brief
analysis of the data, referring the reader to Sreelekshmi et al., (2012) for the finer details of the
features of chaotic systems and of the methods applied. The wind speed prediction schemes to
be described later in coming sections are based on the results of this analysis.

The first step in the analysis of time series by methods of dynamical system theory is reconstruct-
ing the state space dynamics of the original system using the given time series data (Packard
et al., 1980). This is done by constructing from the time series x(t) a new vector time series x(t)
given by

x(t) = (x(t), x(t− τ), . . . ,x(t− (m−1)τ), (3.2.1)

where τ is a suitable multiple of the sampling time, called delay. Taken’s embedding theorem
and its extensions (Takens, 1981; Sauer et al., 1991; Sauer et al., 1993) assert that the dynamics
of y(t) in the reconstructed phase space will be topologically identical to the dynamics of the
original system. In general, if the cloud of points generated by y(t), called the attractor, fills
out the m-dimensional phase space for all values of m, the time series may be considered to
be generated by a stationary stochastic process. On the other hand, if the attractor occupies a
region of small dimension, for all sufficiently large values of m, it may be an indication that the
original system is deterministic and chaotic. On a chaotic attractor, nearby trajectories diverge
with time exponentially fast, the rates of which are quantified by the Lyapunov exponents in the
principal directions. A positive Lyapunov exponent is considered a signature of chaos. Due to
the exponential divergence of trajectories, a chaotic attractor usually has a complex structure with
a non-integral dimension. A chaotic time series exhibit broad-band spectrum (c. f. Figure. 3.7)
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FIGURE 3.3: (a) The autocorrelation function of wind speed data. (b) Mutual information of the
wind speed data as a function of delay (τ).

and other characteristics of random time series when analysed using linear stochastic tools, so
a very detailed analysis is often necessary to distinguish a chaotic time series from a stochastic
data. The space time separation plot given in Figure.3.2 of the time series helps us identify the
temporal correlations within the time series and is useful in estimating a reasonable delay. The
diurnal variations are evident in this figure. In order to reduce its modulation effects we removed
the average diurnal variation by carrying out an epoch analysis as discussed by Kumar et al.,
(2004) and further analysis was carried out on this detrended time series.

In practical applications of embedding theorem, an optimal choice of the delay τ and the embed-
ding dimension m are important. We have used the method of autocorrelation (Kantz et al., 2003)
as well as the method of mutual information (Fraser et al., 1986) to arrive at a proper choice of τ .
In Figure. 3.3 (a) and (b), which respectively plots the autocorrelation and mutual information of
the wind speed data as a function of τ , the first minimum of the autocorrelation curve is observed
at around τ = 85 suggesting an optimal value τ = 85 and the mutual information almost level off
by τ = 75, suggesting the value of τ can optimally be taken around this value. The value τ = 85
is taken for further analysis. To determine the embedding dimension m, we used the method of
false neighbours (Kennel et al., 1992; Kantz et al., 2003) which is based on the idea that in a
large enough embedding dimension the fraction of false neighbours, which arise due to crossing
of trajectories in a lower than true dimension, would be negligibly small. The fraction of false
neighbours for the wind speed data is shown in Figure. 3.4, which suggests that m = 14 would be
an optimal choice for the embedding dimension as the fraction attains a minimum around m= 14.
However a precise knowledge of m is desirable only to exploit the determinism in the dynamics
with minimal computational effort, and a large value of m will add redundancy and thus degrade
the performance of many algorithms such as those for predictions (Kantz et al., 2003). It may
also be noted that the parameter values obtained here are consistent with those in our previous
analysis of wind speed data from a different geographical location (Sreelekshmi et al., 2012).
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FIGURE 3.4: The fraction of false nearest neighbours as a function of the embedding dimension
m for the time series of wind speed with τ = 85, showing that any m ≥ 14 can be considered
optimal.

The dimension of the attractor gives a quantitative measure of the self-similarity of the attractor
and also gives an idea of how large or small a region is occupied by the attractor within the em-
bedding space. A standard dimension estimate for time series data is the correlation dimension,
introduced by Grassberger et al., (1983), which proceeds by first computing the correlation sum
defined by (Hegger et al., 1999)

C(ε,m) =
2

N(N−1)

N

∑
i=1

N

∑
j=i+1

Θ(ε−‖yi− y j‖), (3.2.2)

where Θ(a) = 1 if a > 0, Θ(a) = 0 if a≤ 0, and then the local slopes

D2(ε,m) =
dlnC(ε,m)

dlnε
(3.2.3)

which are estimates of the correlation dimension. Figure. 3.5 plots D2(ε,m) versus ε for the
wind speed data with the previous choice of delay and for embedding dimensions ranging from
14 to 16. The curves exhibit convergence onto a plateau for a range of values of ε , and the value
corresponding to the plateau, D2 = 1.656± 0.008, is an estimate of the correlation dimension
for the given data. The low dimensionality of the attractor is an indication of the deterministic
character of the underlying dynamics exhibiting chaotic behaviour.

A chaotic system must have at least one positive Lyapunov exponent and to check for this one
usually computes the largest Lyapunov exponent in the system which, if found positive, is consid-
ered a strong evidence for chaos. We have used the Kantz algorithm (Kantz, 1994) to estimate the
largest Lyapunov exponent, which proceeds by computing the stretching factor S(∆n), involving
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ranging from 14 to 16 showing a plateau for small values of ε and giving an estimate of D2 =
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a reference point yn0
and its neighbours yn in the embedding space over a neighbourhood U(yn0

)
of yn0

, defined by

S(∆n) =
1
N

N

∑
n0=1

ln

(
1

‖U(yn0
)‖ ∑

yn∈U(yn0)

∥∥∥yn0+∆n− yn+∆n

∥∥∥) (3.2.4)

For the wind speed data, Figure. 3.6 plots variations of S(∆n) with ∆n for m = 14,15 and shows
a linear growth in the range of 0 < ∆n < 20, the slope of which gives an estimate of the maxi-
mum Lyapunov exponent, in this case 0.15± 0.006. The positive value of the largest Lyapunov
exponent is another evidence for the chaotic dynamics of the underlying system.

The frequency decomposition of the time series, the power spectrum, is broadband and exhibits
exponential decay as shown in Figure. 3.7, and this is an indication of the chaotic behaviour of
the time series. The first part of the spectrum decays abruptly with an estimated value of -120.29
for the exponent while the second and third parts exhibit slow decay with values -15.80 and -4.07
for the exponent. This could possibly be caused by qualitatively different mechanisms at work in
the dynamics of the underlying system.

3.3 Predictions
Due to the random nature of wind speed data, most of the wind speed predictions assume that the
data is a realisation of a stochastic process. However, as we have shown in the previous section,
the cause of randomness in the wind speed data can also be low-dimensional chaos, in which case
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FIGURE 3.6: The curve of S(∆n) for embedding dimensions m = 14,15. The maximum Lya-
punov exponent of the time series is the slope of the dashed line 0.15±0.006..

there is a fundamental limit on long term predictions. However, accurate short term predictions
can still be made, taking advantage of simple deterministic relationships which may exist within
the data, involving a few degrees of freedom. The extent of predictability depends on the local
factors affecting wind speed, and in the data we considered accurate predictions up to 3 hours
could be made using non-linear prediction tools.

Given a time series x1,x2, . . . ,xn, the forecasting methods try to predict values a few time steps
ahead, namely xn+k for k = 1,2, . . .. Non-linear forecasting methods are based construction of
delay vectors xn form the time series using eq. (3.2.1);

xn = (xn, xn−τ , . . . ,xn−(m−1)τ), (3.3.1)

for a suitable integral delay τ and embedding dimension m. If deterministic rules govern the
system, we expect a functional relation between xn+1 and xn;

xn+1 = F(xn) (3.3.2)

which in delay embedding reduces to

xn+1 = f (xn). (3.3.3)

If the dynamics is chaotic, F will be non-linear and we try to approximate F or f in various ways
to predict an estimate x̂n+k for the actual value xn+k. In chaotic systems these approximations
are facilitated by an important property, that a sufficiently long time series produces a sequence
of vectors that are dense on the attractor, so that new vectors will be arbitrarily close to some of
those already observed. The approximation schemes used for predictions of chaotic time series
can be broadly classified into local methods and global methods.



Chapter 3. Deterministic prediction of surface wind speed variations 53

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

P
o

w
e

r

Frequency (0.0005)

FIGURE 3.7: The power spectrum of wind speed time series as a function of frequency at location
Latitude: 34.98420 Longitude: -104.03971. Broadband and exponential decay of the power with
frequency are typical characteristics of chaotic signals.

The local approximation schemes try to approximate f locally, probably by a different function
in each time step, by looking for vectors in the past which are close to xn in the embedding space
and using their future for prediction. The simplest of these is the zeroth-order approximation,
which uses the average of the futures of the neighbours of xn in an ε neighbourhood Uε(xn). If
there are N neighbours in Uε(xn), the prediction is simply (Kantz et al., 2003)

x̂n+1 =
1
N ∑

x j∈Uε (xn)
x j+1 (3.3.4)

A better method is the local first order (LFO) approximation, where instead of taking the average
of the neighbours in Uε(xn), a linear model is fitted to these neighbours, so that the prediction
takes the form (Kantz et al., 2003)

x̂n+1 = Anxn +bn. (3.3.5)

These local linear models, one for each time step, together generate a non-linear model globally.

The global models of prediction try to approximate F by a single function on the whole attractor.
One of the popular global models used in predictions of chaotic time series is the radial basis
function (RBF) model introduced by Lowe et al., (1988). In this, the approximating function F
is taken as a linear superposition of a set of radial basis functions Φi(r), with r > 0, which are
typically bell-shaped with maximum at r = 0 and rapidly decaying towards zero with increasing
r. For a set of suitably chosen points yi, called the centres , which are reasonably well distributed
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FIGURE 3.8: Comparison of predicted values with the actual values for LFO and RBF. The
symbols are plotted only at every 30 minutes for legibility. (a) Latitude: 42.31925 Longitude:
-98.60197 m = 5,τ = 8 (b) Latitude: 43.51076 Longitude: -99.47652, m = 12,τ = 2,

on the attractor, the model assumes the form (Kantz et al., 2003)

F(x) = α0 +
p

∑
i=1

αiΦ(‖x− yi)‖). (3.3.6)

The basis functions Φ are modelled using Gaussians with their number and width kept fixed
throughout the model. This makes the estimation of the constants αi a linear problem which can
be solved using least square method.
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FIGURE 3.9: (a)The exponential decay of the correlation coefficient between the predicted and
actual for every 3 prediction time steps (b) The exponential growth RMS error prediction for
every 3 prediction time steps. The arrows show axes for the respective symbols of data points.

The advantage of LFO method is its flexibility, but it may not yield desirable performance on
parts of the phase space where the points do not span the available space dimensions. On the
other hand, global models have the advantage of providing the structure and properties of the
underlying system as it can yield closed expressions for the full dynamics. These models can
effectively describe the observed process in regions of the space which have been visited by the
data, but outside this area, the shape of the model depends heavily on the chosen function (Hegger
et al., 1999).
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FIGURE 3.10: The geographic locations, denoted by filled circles, where wind speed data was
analysed for performance of deterministic model prediction.

Figure. 3.8(a) and (b) shows typical results of wind speed prediction using the above methods,
made at a couple of locations for suitable choices of the embedding parameters, and their com-
parison with actual data. Each prediction uses the available wind speed data for the location up to
a specific point of time for modelling, and then employs the model for predicting future values.
It is seen from these figures that, provided we use appropriate embedding parameters, the deter-
ministic methods can predict wind speed with remarkable accuracy up to 3 hours, with the RBF
method giving fairly accurate predictions for another 15 hours in both the cases. A method for
determining the optimal embedding parameters for prediction is discussed in the next section.

Figure. 3.9(a) quantifies the similarity of predicted values with the measured data for a typical
case, by plotting the statistical coefficient of correlation between the predicted and actual values
as a function of the number of time steps into the future. The correlation coefficients were cal-
culated cumulatively, at the end of every 3 prediction time steps, using all the predicted values
available up to that time and the corresponding measured values. The exponential deterioration
of the correlation with increasing prediction time is a characteristic feature of deterministic chaos
(Sugihara et al., 1990) and provides further evidence of the fact that the erratic fluctuations in
wind speed data are caused by the chaotic dynamics of the underlying system and are not an arte-
fact of uncorrelated additive noise. Figure. 3.9(b) shows how the root mean square (RMS) error
between the predicted and measured values, again calculated cumulatively every 3 time steps,
propagates as we predict further into the future. The exponential growth of the prediction error
further substantiates the chaotic nature of the data.

3.4 Statistical analysis of prediction errors
To demonstrate the wider applicability of the deterministic methods for making short term wind
speed forecasts we now carry out a statistical analysis of the prediction errors for forecasts made
at a total of 234 geographical locations. For the analysis we have considered 10 minutes interval
wind speed data for 3 years from 2004, available from National Renewable Energy Laboratory ,
USA for the 234 locations depicted in Figure. 3.10.
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FIGURE 3.11: (a) NRMSE of 1 hour predictions using LFO, for the period from 2004 to 2006
at an interval of 30 days, averaged over 234 locations. (b) NRMSE of 1 hour predictions using
LFO for the 234 locations, calculated at an interval 30 days and averaged over the period from
2004 to 2006. (c) & (e) are location averaged NRMSE for 2 and 3 hour predictions respectively.
(d) & (f) are time averaged NRMSE for 2 and 3 hour predictions respectively. The error bars in
the figures are with respect to the standard error of the mean. The horizontal dotted lines in (b),
(d) and (f) represent the mean of the respective time averaged NRMSE values over the entire set
of locations.

The optimal choice of the embedding parameters m and d is a major factor affecting the accuracy
of prediction. Since the dynamics of wind speed varies over locations, these parameters have to
be determined for each location separately. However, the embedding parameters suggested by the
autocorrelation function or the fraction of false neighbours need not always give the most accurate
predictions (Domenico et al., 2013) and a systematic procedure for determining the most suitable
parameters for predictions using a model data is still elusive. For the present analysis, to fix the
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FIGURE 3.12: NRMSE, with standard error, of 1 hour prediction for the period of 3 years from
2004 over 234 locations using LFO and RBF. The lines connecting the symbols are to guide the
eye.

optimal parameters at each location, we have used a test run procedure as described below. Given
a time series of n points x1, . . . ,xn, we want to predict the next k values xn+1, . . . ,xn+k. From the
given data set, we take the first n−3 data points to form a model for making a test prediction of
the next three data points for various values of m and d using one of the deterministic algorithms
described earlier. These predicted values xp

n−2,x
p
n−1,x

p
n are then compared with the actual data

points xn−2,xn−1,xn to find the RMS error. The values of m and d which yield the minimum RMS
error for these three predicted values are selected as the parameter values for the given data set
and used for the prediction of values of xn+1, . . . ,xn+k.

We use spatial averages of prediction errors over various locations as well as time averages at
each location to assess the performance of these methods. Since the range of values of wind
speed vary over locations, we have chosen as a measure of the prediction error the root mean
squared error normalized over the range of the observed data (NRMSE) given by

NRMSE =

√
∑

n+k
n+1(xi− xp

j )
2

k

/
(xmax− xmin) (3.4.1)

where xp
i are the predicted values. For each location we have calculated NRMSE for 1 hour, 2

hour and 3 hour predictions at intervals of 30 days for a 3 year period from 2004 to 2006. Fig-
ure. 3.11(a) depicts NRMSE with error bar for 1 hour predictions averaged over the locations
(location averaged NRMSE), computed at 30 days intervals and plotted for 3 year period. Fig-
ure. 3.11(b) shows NRMSE for 1 hour prediction for each location averaged over a 3 year time
period (time averaged NRMSE) where the horizontal dotted line shows the mean 0.0136 of these
values over the locations. Similar estimates of location and time averaged errors for 2 hour pre-
dictions are given in Figures.3.11(c) and (d) and for 3 hour predictions in (e) and (f). The mean of
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FIGURE 3.13: Comparison of predicted values with the actual values for LFO and f-ARIMA.
The symbols are plotted only at every 30 minutes for legibility. Latitude: 34.98420, Longitude:
-104.03971, (a) m = 13,τ = 3 and (b) m = 8,τ = 7.

the time averaged NRMSE over the locations, indicated in each figure by a dotted line, is 0.0299
for 2 hour predictions and 0.0415 for 3 hour predictions. This shows that the prediction accu-
racy observed in the typical forecasts shown in Figure. 3.8 are more or less maintained across all
locations and various time periods consistently.

Between the deterministic methods, the RBF maintains a consistently slight performance edge
over LFO for short term predictions up to one hour, as is clear from Figure. 3.12, which compares
the location averaged prediction errors for 1 hour predictions by the two methods.
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FIGURE 3.14: Location averaged NRMSE, with standard error, of (a) 1 hour, (b) 3 hour and (c) 6
hour predictions for the period of 3 years from 2004 over 234 locations using LFO and f-ARIMA.

3.5 Comparison with f-ARIMA
Among the various statistical methods used in wind speed prediction ARIMA is a popular model
which gives reasonably accurate predictions of wind speed at many locations (Kamal et al., 1997;
Cadenas et al., 2007; Kavasseri et al., 2009). An ARIMA(p,d,q) model combines an autore-
gressive(AR) process of order p, a moving average(MA) process of order q and a differencing
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operator of order d into a single model. It has the general form (Box et al., 2013)

Φ(B)∆dxt = c+Θ(B)εt (3.5.1)

where εt is a white noise process and Φ(B) and Θ(B) are respectively the autoregressive and
moving average operators defined by

Φ(B) = 1−φ1B−φ2B2−·· ·−φpBp

Θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq (3.5.2)
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for suitably chosen constants θi and φi and non-negative integers p and q. B is the backward-shift
operator so that Bxt = xt−1 and ∆ = 1−B is the differencing operator and in the general ARIMA
model d is an integer.

f-ARIMA is a generalisation of ARIMA where the parameter d is allowed to have a fractional
value with the operator (1−B)d interpreted to have the binomial expansion (Hosking, 1981)

(1−B)d = 1−dB+
d(d−1)

2!
B2 + · · · (3.5.3)

The possibility of wide range of choices for the parameters p, q, d and the constants φi and θi
give the model great flexibility and wider applicability.

One of the features that distinguishes a f-ARIMA process from an ARIMA process is that the
former is characterised by a slow decay in its autocorrelation function compared to the latter.
This feature makes f-ARIMA model an attractive choice for data sets that exhibit long range
correlations such as the wind speed data (Kavasseri et al., 2009).

General characteristics of the predictions by f-ARIMA and how they compare with the predictions
by LFO can be seen from fig.3.13(a) and (b).The performance of f-ARIMA is comparable to LFO
initially but its predictions deviate from actual values and level off to a steady value after a brief
period. In contrast, while the accuracy of prediction of LFO also falls off gradually after 3 hours,
it nevertheless captures the essential dynamics of the original time series even further.

For comparing the performance of LFO versus f-ARIMA, we have elected to generate the best
possible predictions by both the methods, by experimenting with various values of the parame-
ters which determine the accuracy of prediction. Thus, for a model data set x1, . . . ,xn, we would
generate several trial predictions for the next k data points using various parameter values, com-
pare each of them with the actual observed data xn+1, . . . ,xn+k, and choose the one that gives
the least prediction error. For the LFO method this might yield better predictions than would be
obtained with the embedding parameters selected by the procedure described in the last section.
While the latter procedure would be useful in real world applications where there are no future
data to compare the predictions with, it need not always give the optimum parameter values giv-
ing the most accurate predictions. In fact, we have observed that the LFO predictions obtained
here (Figure. 3.14(a), (b)) are marginally better than those in Figure. 3.11(a) and (b), with the
location averaged NRMSEs being smaller by 0.8% and 1.8% on the average for 1 and 3 hour
predictions respectively.

Figure. 3.14 shows the results of a statistical analysis of the performance of LFO and f-
ARIMA,with optimum parameter values, over all the 234 locations described earlier. The figures
(a), (b) and (c) compare NRMSE for 1, 3 and 6 hour predictions averaged over all locations com-
puted in intervals of 30 days for a 3 year period. The prediction accuracy of LFO is noticeably
better than that of f-ARIMA across all locations and all time periods. For low resolution wind
speed data of the kind considered in this work, the accuracy and the longevity of the predic-
tions obtained by the deterministic methods are therefore a significant improvement over existing
methods.
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3.6 Conclusions
In this work we demonstrate the suitability of deterministic methods in making short term fore-
casts of wind speed based on past data. These methods are applicable in situations where the
underlying dynamics of wind speed is chaotic leading to random like fluctuations in the time
series of wind speed. We have applied a couple of chaotic time series prediction tools (one local
method and one global method) on records of wind speed data of 10 minute resolution from a
total of 234 different geographical locations, at each location making 1 hour, 2 hour and 3 hour
predictions at intervals of 30 days for a period of 3 years. The predictions are very accurate for
up to 1 hour and fairly accurate for up to 3 hours. A statistical analysis of the prediction errors
from these locations reveal that the average prediction error is 1.36% of the range of wind speed
for 1 hour predictions, 2.99% for 2 hour predictions and 4.15% for 3 hour predictions.

We have also compared the efficiency of the deterministic methods with predictions by f-ARIMA
at each of the above 234 locations on the basis of 6 hour predictions at intervals of 30 days for
a period of 3 years. It is seen that, compared to f-ARIMA, the deterministic methods give better
prediction accuracy for longer periods of time and capture the dynamics of the fluctuations in the
original data more faithfully. These prediction methods are simple and computationally efficient
alternatives for short term wind speed forecasts.





4
Empirical mode decomposition and chaos

based prediction model for wind speed
oscillations

Accurate short-term prediction of wind speed is one of the critical issues faced by wind
farm industry so as to plan their trading strategies and energy management. In this chapter
we present an empirical mode decomposition (EMD) based chaotic model for short-term
predicting wind speed. While EMD technique is used to decompose the measured wind
speed time series data into its basic components called intrinsic mode functions (IMF) and
residue, chaotic prediction tool is applied on each of them. Prediction result of each com-
ponent is summed up to reconstruct into original form. Resultant prediction of this hybrid
method is compared with that chaos model prediction of given data without decomposi-
tion. The comparison results show that prediction accuracy can be remarkably improved
by combining EMD and chaos model.

4.1 Introduction
As a clean and cheapest power source, wind has already find its own position in worldwide
energy market. According to World Wind Energy Association (WWEA) by 2014 the total world-
wide wind capacity has reached 326GW meeting 4% of world’s electricity demand (WWEA,
2015). Relying on the success stories of the traditional markets, new markets are emerging and
Global Wind Energy Council (GWEC) expects by 2050, 20-30% of global electricity supply can
be provided by wind power (GWEC, 2014). Although wind energy technologies have advanced
significantly, growing importance of wind energy sector alerts researchers and policy makers to
consider the essentials that may build and support a well defined, cost efficient wind system.
For this purpose International Energy Agency (IEA) identified the four strategic research topic,
characterize the wind resource, develop next generation wind power technology and wind inte-
gration for wind energy development (IEA, 2013). Accurate short-term wind speed forecasting,
which comes under characterization of wind, is an important research area as it can contribute
in reducing the wind power plant performance uncertainty. Prior knowledge about wind speed
helps utility and wind farm operators to ensure grid stability and achieve favorable trading per-
formances.

Numerous methods, including physical and time series models, are available in literature and
practice for predicting wind speed on different time scales (Soman et al., 2010). Based on

65
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methodology used, wind speed modeling techniques are broadly classified as physical models,
statistical models, artificial intelligence based models and hybrid models. Prominent physical
model, Numerical Weather Prediction (NWP) method, uses mathematical models of the atmo-
spheric parameters like temperature, pressure, surface roughness and obstacles. Statistical such
as ARMA, ARIMA models use historical time series data for identifying patterns to make pre-
dictions (Kamal et al., 1997; Cadenas et al., 2007; Kavasseri et al., 2009). Other prediction
methods like artificial intelligence (AI) models and Hybrid models have also been developed and
investigated (Soman et al., 2010; Mohandes et al., 1998; Bilgili et al., 2007; Haque et al., 2013).
Although many modeling techniques have been proposed, persistence method which assumes
present value as the forecasted is still considered as a bench mark in short-term wind speed pre-
diction (Soman et al., 2010). Apart from these traditional methods it has recently been shown
that apparent random oscillation of wind speed data is chaotic suggesting non-linear determinis-
tic prediction schemes can be used for accurate short-term predictions (Sreelekshmi et al., 2012).
In our previous work we have analysed the scope of deterministic methods to predict wind speed
variations, and demonstrated that these methods are capable of reasonably accurate predictions
up to a few hours (Drisya et al., 2014).

In this present work, an attempt is made to combine Empirical Mode Decomposition (EMD)and
traditional non-linear time series analysis tools. Two methods are combined on the assumption
that EMD shall decompose the data into a finite number of intrinsic mode functions (IMF) and
then applying chaotic prediction tools on each IMF may better capture the deterministic character
of oscillation giving a better prediction accuracy.

4.2 Methodology

4.2.1 Nonlinear time series and prediction tools

For a chaotic dynamical system, indirect measurement of the system’s property is done from a
single time series with the help of state space reconstruction (Packard et al., 1980). The recon-
struction preserves the properties of the dynamical system. The method of delays reconstructs a
new vector x(t) from a measured time series x(t) as

x(t) = (x(t),x(t− τ), ....,x(t− (m−1)τ)) (4.2.1)

where τ is called delay or sampling time at which measurement is done and m is the embedding
dimension. The embedding theorem of Takens and its extensions asserts , for almost all values of
time delay and all smooth measurement functions embedding is valid as long as m > 2D where D
is the box-counting dimension of the attractor (Takens, 1981; Sauer et al., 1993). That means with
proper reconstruction x(t) preserves characteristics of the system invariants such as Lyapunov
exponent, Entropies, Fractal Dimension etc. Non-linear forecasting methods uses reconstructed
delay vectors and assumes a functional relation between xn and xn+1.

xn+1 = Fxn (4.2.2)

which in delay embedding reduces to
xn+1 = f xn (4.2.3)
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For predicting xn+k both global and local approximation methods are used. Global schemes
try to approximate a single function F globally on the whole attractor while local approximation
methods approximate F locally, by a different function in each time step. Although global models
have the advantage of approximation function which capture the full dynamics, the method is
very complex and in outside regions of the space which have been visited by the observed data it
depends on the chosen function (Hegger et al., 1999). Because of its flexibility in capturing local
behavior of the attractor we chose local approach to study and forecast.Local approximation
method suggested by Lorenz was the first one and it approximates future value xt+1 by xT+1,
where xT is the nearest neighbour in the state space (Lorenz, 1963). A simple modification to this
is made by Kantz, known as zeroth order approximation, in which for a collection of N nearest
neighbours of xt within ε distance in phase space, use the average of its futures as the prediction
xt+1 (Hegger et al., 1999). That means

x̂n+1 =
1
N ∑

x j∈Uε (xn)

x j+1 (4.2.4)

A more accurate method in which a linear model is fitted to the neighbors Uε(xn) of xn known as
local first order method Hegger et al., (1999) represented by

x̂n+1 = Anxn +bn (4.2.5)

Local approximation methods reduces complexity and adapts the local behavior of the attractor
precisely.
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FIGURE 4.1: Time series of wind speed at location given by latitude: 47.11332◦ N longitude:
90.44666◦ W at 80 m.
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FIGURE 4.2: Comparison of predicted values with actual values for EMD decomposition
and without decomposition for four different locations (a) Latitude: 34.9842◦ N Longitude:
104.03971◦ W (b) Latitude: 41.85498◦ N Longitude: 97.61899◦ W (c) Latitude: 46.73381◦ N
Longitude: 101.7077◦ W (d) Latitude: 37.84476◦ N Longitude: 100.06653◦ W

4.2.2 Empirical mode decomposition

Empirical mode decomposition was first used as a signal decomposition technique for Hilbert-
Huag Transform (HHT) (Huang et al., 1998). EMD breaks down the signal x(t) into various
components based on its local characteristics and in order to obtain these local details it considers
the two consecutive minima (or maxima). It may be noted that a maxima (or minima) exists
between these two consecutive minima (or maxima). We can define a local high-frequency part
or local detail d(t) corresponding to the oscillation between the two minima (or maxima) passing
through the maximum (or minimum) existing between them. One still has to estimate the local
low-frequency part or local trend m(t) so that x(t) = m(t)+d(t) between the adjacent minima (or
maxima) identified. Suppose that the local consecutive minima are connected by a cubic spline
as lower envelope xlow(t) and similarly local maxima are connected by a upper envelope xsup(t)
and the mean of these tow are obtained by

m1(t) =
(
xlow(t)+ xsup(t)

)
/2 (4.2.6)

Then the approximate first Intrinsic Mode Function (IMF) is given by

d1(t) = x(t)−m1(t) (4.2.7)
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By treating d1t as a new set of data, its upper and lower envelopes are obtained to find the mean
m11(t) so that

d11(t) = d1(t)−m11(t). (4.2.8)

This process of shifting is repeated until the number of zero crossings of d1k(t) is equal to the
number of extrema or different at the most by 1 from the number of extrema. The convergent
result c1(t) = h1k(t) with zero local mean is the first IMF.

The first residue r1(t) = x(t)− c1(t) is then processed in the same way to obtain c2(t) so that
r2(t) = x(t)−c1(t)−c2(t). The process is repeated till either cn(t) or rn(t) becomes smaller than
a predetermined value so that

x(t) = c1(t)+ c2(t)+ · · ·+ cn(t)+ rn(t) (4.2.9)

4.3 Results and discussions
For analysis, 10 minutes resolution wind speed data of the period 2004-2007, measured at dif-
ferent geographical locations of USA has been used. The data was obtained from National Re-
newable Energy Laboratory (http://www.nrel.gov),USA. As part of preprocessing of data, a noise
reducing technique was applied to reduce the effect of additive noise. This denoised data is used
for further analysis. Figure.4.1 shows the apparent random behaviour of wind speed oscillations.

In our previous work we demonstrated the irregular fluctuations exhibited by wind speed data is
originated from a low-dimensional, deterministic, chaotic system and hence application of non-
linear prediction tools can give accurate short term prediction (Sreelekshmi et al., 2012). This
was confirmed by our later analysis (Drisya et al., 2014). Since the system composed of various
dynamic factors, it is assumed that better short to mid-term prediction could be possible if we
decompose the signal into its basic components and then analysing each component separately. In
order to assess this assumption, a simple interpolation smoothing based EMD method is applied
to measured wind speed data for getting a family of frequency ordered IMF components and a
residue. Decomposition is done with the help of EMD package available for R environment (Kim
et al., 2009). A portion of each component is used to build a linear first order model for multi
step ahead prediction. Aggregate all the predicted components to reconstruct into its original
form. For comparison purpose a prediction model of linear first order model original time series
without decomposition is also carried out.

Figure.4.2 depicts the general characteristics of the predictions by linear first order model and
EMD based linear first order model model. The results from 4 different locations are plotted
along with actual data. The symbols are plotted every 20 minutes for legibility. As we can see
both methods are accurate for initial time but as time goes on linear first order model without
decomposition deviates from original in a faster rate. From Figure.4.3 it is evident that, the
proposed EMD based chaotic prediction method is capable providing better prediction even upto
10 hours, compared to prediction without decomposition. A statistical analysis of prediction
errors calculated at 30-day intervals for 3 years is also done over five locations. We have chosen
measure of normalised root mean squared error (NRMSE), because of the change in location may
affect the range of measured wind speed. For a k step ahead prediction, NRMSE is calculated as
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FIGURE 4.3: Time and location averaged NRMSE for predictions up to 10 hours ahead for Lfo
with and without EMD.

NRMSE =

√
∑

n+k
n+1(xi−xp

i )
2

k
(xmax− xmin)

(4.3.1)

where xp
j are the predicted values.

Spatial averages of prediction errors over the various locations, as well as time averages over
various periods of time at each location, are important measures for getting the clear idea of
prediction accuracy since it explain how the model perform along various location as well as at
different times. For getting an overall perfomance of the two models we have calculated both time
and location averaged NRMSE upto 10 hours on an hourly basis. From the Figure.4.3 it is clear
that EMD based LFO method improves the prediction accuracy significantly and can predict upto
10 hours with a relative error less than 4% of the range of oscillations. For 10 hour prediction the
gain of accuracy EMD decomposition is 49.85 % over bare linear first order method.

4.4 Conclusion
Short to medium term prediction of surface wind is critical to the energy management and pro-
duction strategies of any wind power industry. The apparent unpredictable nature of wind speed
oscillations has always been a problem faced by the industry. This has generated lot of enthu-
siasm research area to develop reliable models to predict wind speed and many techniques have
been reported in the literature. Motivated by the capability of deterministic models in providing
reliable predications, we investigate strategies to enhance the prediction accuracy. In this chapter
we present an empirical mode decomposition (EMD) based chaotic model for short-term pre-
diction of wind speed variations. The comparison of forecast of models with and without EMD
decomposition shows that prediction accuracy can be remarkably improved by combining EMD
and modeling the wind data based chaos theory.



5
Week-ahead predictions of wind speed using

simple linear models with wavelet
decomposition

Simple linear methods are widely used for time series modelling and prediction and in partic-
ular for the forecast of wind speed variations. Linear prediction models are popular for their
simplicity and computational efficiency, but their prediction accuracy deteriorates beyond a few
time steps. In this study, we demonstrated that the prediction accuracy of simple auto-regressive
(AR) models could be significantly improved, by as much as 60.15% for day-ahead predictions
and up to 18.25% for a week ahead forecasts, when combined with suitable time series de-
composition. The comparison with new reference forecast model (NRFM) also showed similar
accuracy gain of a week ahead predictions. The combined model is capable of forecasting wind
speed up to 7 days ahead with an average root mean square error less than 3 m/s. We also com-
pare the performance of AR and ARFIMA models in wind speed prediction and observe that
the ARFIMA model is no better than the AR model when used in combination with time series
decomposition.

5.1 Introduction
In the recent statistical literature, concern has been the study of long-memory models that capa-
ble of going beyond the presence of random walks and unit roots in the univariate time series
processes. The autoregressive fractionally integrated moving average (ARFIMA) process is a
class of long-memory models, and its primary objective is to explicitly account for persistence
to incorporate the long-term correlations in the data (Contreras-Reyes et al., 2013). The recent
studies at the Department of Futures Studies - University of Kerala, suggested that the underlying
dynamics are deterministic, low-dimensional and chaotic. These findings imply that determin-
istic models may be more suitable to analyse wind speed fluctuations and may be capable of
providing more accurate short-term predictions than the existing stochastic models (Sreelekshmi
et al., 2012; Asokan et al., 2012). However, the question of long-term prediction of wind speed
intensity remains to be an open problem (Brix et al., 2005).

Wind energy source is considered to be one of the fastest growing alternative sources of energy
globally since it is clean, abundant, economically viable and safe for the environment. Each
Megawatt hour of wind power generated saves at least 500 kilogrammes of greenhouse effect
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gases from being churned into the atmosphere when compared to the electricity produced from
gas or coal powered generators thus making the wind power one of the most eco-friendly sources
of energy (Nicholson et al., 2011; Clancy et al., 2015). Recently, there has been a steady growth
of the generation and use of wind power such that by the end of the year 2013, the total installed
capacity of wind energy stood at 318 Gigawatts. According to the European Wind Energy As-
sociation, they project that if the growth of wind power generation continues at the current rate,
it will account for more than 12% of the total energy demands by the year 2020 (Global Wind
Energy Council, 2013). A major factor affecting wind power production is the high variability
of the wind speed which is influenced by numerous meteorological factors. These variations do
occur at all time scales ranging from seconds to months and even years and being able to predict
these fluctuations is a fundamental component in the production and management of wind energy.
Based on the forecast period, wind speed predictions are commonly classified as short-term (up
to 6 hours ahead), medium term (6 hours up to 1 day ahead) and long-term (1 day up to 1 week
ahead) (Soman et al., 2010). Improving the accuracy of predictions at all these time-scales is
crucial at various stages of wind energy production and management. For example, short-term
forecasts ranging from milliseconds to a few minutes are needed for active turbine control and
managing wind energy at electricity grids (Hering et al., 2010; Wang et al., 2012), and fore-
casts in the range of a few hours up to a few days are useful in energy management and trading,
especially in liberalized electricity markets where users device best bidding strategy based on ex-
pected power production (Gomes et al., 2012). Long-term forecasts of up to several days ahead
are useful in managing the maintenance of wind farms and transmission lines (Aggarwal et al.,
2013). The development of methods with improved prediction accuracy of wind speed has been
the centre of concern amongst researchers in the recent past.

Various models for wind prediction include physical models, which use complex mathematical
equations to describe the physical relationship between different atmospheric parameters and
local topography, statistical models which use time series of past data or probability distribution
of wind speed for future predictions and also hybrid models which combine physical models with
statistical tools (Sfetsos, 2000). An in-depth review of the present status of wind power forecast
models, especially of the meteorology based approaches, can be found in (Monteiro et al., 2009)
and (Giebel et al., 2003). Provided the meteorological conditions do not change dramatically over
a short term, time series models, which use historical wind speed data to predict future values
are found to perform reasonably well. They include moving average models such as ARMA,
ARIMA and its variants fitted to the time series of wind speed (Kamal et al., 1997; Cadenas et al.,
2007; Kavasseri et al., 2009), models based on artificial neural networks (Mohandes et al., 1998;
Cadenas et al., 2007; Bilgili et al., 2007; Monfared et al., 2009) and deterministic prediction
models suitable for chaotically varying wind speed dynamics (Sreelekshmi et al., 2012; Drisya
et al., 2014). Most of these methods are capable of reasonably accurate predictions up to a few
hours, but the range of predictability often varies significantly over topography and other local
conditions (Soman et al., 2010).

Wind speed data usually exhibit long-range correlations, and ARFIMA models are especially
suited for making short to medium term forecasts of such data. Kavasseri and Sreetharaman
Kavasseri et al., 2009 have applied ARFIMA models to forecast hourly average wind speeds up
to a period of two days ahead, with an improvement of prediction accuracy up to 42% compared
to the simple method of persistence. In this study, we demonstrated that decomposition of the
wind speed data into selected frequency components before applying the forecasting technique
can dramatically improve the accuracy and longevity of prediction. The decomposition of wind
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speed data is achieved by the use of wavelet transform method, while the actual forecasts on the
component series are made by simple prediction tools such as auto-regressive (AR) model and
ARFIMA model.

With the inherent variability of the wind resource, it is often valuable to be able to forecast wind
speed for some time ahead. For example, it may be useful, from a controls standpoint, to be able
to predict the very short-term turbulent variations from a few seconds to a few minutes. Or, in
the case of a wind turbine or wind farm operator, the capacity to effectively integrate the wind
energy into a grid may be affected by the predictability of the output from the wind turbine(s). In
this case, wind speed, or power production forecasts, might be needed for the next few hours or
even for one to two days ahead.

Wind speed forecasting is very fundamental in determining the resultant wind power generated
from a wind farm, that is, the power output from a wind turbine is directly proportional to the
cube of wind speed. Thus the accurate prediction of wind speed can result in better wind power
forecast. Most of the current research studies are focusing on the development of prediction
models that can guarantee improved long-term wind speed prediction accuracy.

5.2 Maximum Overlap Discrete Wavelet Transform
Wavelet transform enables us to decompose time series data into different frequency components
and then study each corresponding component with a resolution matched to its scale. Whereas
traditional Fourier transform methods use superposition of sines and cosines of different ampli-
tudes and frequency to represent functions, the wavelet transform does this using a collection of
wavelet functions, all of which can be generated by scaling and translating a single base wavelet
called mother wavelet. The mother wavelet and all wavelets generated from it are, unlike sines
and cosines, localised in space and the given function or data approximation by a series of scaled
and translated versions of these localised functions. This transformation allows processing of
data at different scales or resolutions, with lower levels giving finer details of the high-frequency
components and higher levels yielding grosser features of the low-frequency components of the
data. Measured data such as wind speed data are inherently multi-scale due to contributions from
events occurring with different localisations in time and frequency, and wavelets are more suited
for analysis of this kind of data.

Mathematically, a mother wavelet is a square integrable function ψ(t), which satisfies the admis-
sibility condition (Daubechies et al., 1992),

0 < cψ =
∫

∞

−∞

|ψ̂(ω)|
|ω|

< ∞ (5.2.1)

where ψ̂(ω) is the Fourier transform of ψ(t) and preferably a regularity condition which requires
that ψ(t) be fast decaying or be non-zero only on a finite interval (Daubechies et al., 1992).
To decompose a given function, wavelet transforms use a family of wavelet functions ψs,τ(t)
obtained from the mother wavelet ψ(t) by dilations and translations;

ψs,τ(t) =
1√
s
ψ

(
t− τ

s

)
, s,τ ∈ R,s 6= 0 (5.2.2)
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where s is the scale parameter and τ is the location parameter. The continuous wavelet transform
of the function x(t) is then defined by,

Wx(s,τ) =
∫

∞

−∞

x(t)ψ∗s,τ(t)dt (5.2.3)

where ∗ denotes the complex conjugate. The admissibility condition of ψ(t) ensures that x(t) can
be recovered from ψs,τ(t) by the inverse transform (Daubechies et al., 1992)

x(t) =
1

cψ

∫
∞

−∞

∫
∞

−∞

Wx(s,τ)ψs,τ(t)
dτds

s2 , (5.2.4)

and this is called the wavelet decomposition of x(t).

The variation of the scale and location parameter of the wavelet over a continuum of values in the
continuous wavelet decomposition leads to undesirable redundancy in the calculation of wavelet
coefficients. In practical applications it is more convenient to sample the parameters s and τ on a
discrete set of values in the scale-time plane. This leads to discrete wavelets defined for suitably
chosen grid points on the s− τ plane,

ψ j,k(t) = s− j/2
0 ψ(s− j

0 t− kτ0), j,k ∈ Z (5.2.5)

where s0 > 1 and τ0 are fixed dilation and translation factors (Daubechies et al., 1992). The
so called dyadic sampling corresponds to the choice s0 = 2 and τ0 = 1. The discrete wavelet
transform(DWT) is then defined by,

Wx(i, j) =
∫

∞

−∞

x(t)ψ∗j,k(t)dt. (5.2.6)

If the set of wavelets ψ j,k(t) forms an orthogonal basis, the above transform can be inverted
leading to the discrete wavelet decomposition of x(t) given by,

x(t) =
1

cψ
∑

j,k∈Z
Wx( j,k)ψ j,k(t). (5.2.7)

The DWT is especially suited for time series data sampled at equal intervals of time. We use a
specific version of DWT, called Maximal Overlap DWT (MODWT) which has some advantages
over traditional DWT. First, it is well defined for all sample sizes N, unlike DWT which requires
N to be multiple of J for a complete decomposition of J scales. MODWT is highly redundant
over DWT and also non-orthogonal, but the redundancy allows better comparison of the series
with its decomposition (Percival et al., 2006).

At each scale J, the MODWT transforms an N dimensional vector X , which represents the given
data, into J+1 new vectors each of dimension N. These vectors consist of J vectors W1,W2, · · ·WJ
of MODWT wavelet coefficients corresponding to the scales τ j, j = 1,2, . . .J and a vector VJ
containing the so-called MODWT scaling coefficients. We can invert this procedure and recover
the original vector X from these wavelet and scaling coefficients. This leads to a decomposition
known as multi-resolution analysis(MRA), expressed as (Percival et al., 2006; Percival et al.,
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2004),

X =
J

∑
j=1

D j +SJ (5.2.8)

The vector D j contains the details of the data associated with the average variations on a scale
of τ j and is computed exclusively from the wavelet coefficients in Wj. On the other hand, SJ is
calculated from the scaling coefficients in VJ and is associated with the averages at scales 2τJ and
higher, which separates the smoother part of the data (Percival et al., 2006; Percival et al., 2004).
Thus the MRA expresses the given data as a sum of a smoother part and a set of component
parts giving details of the variations at various scales. In this study, the original wind speed
data were decomposed into twelve levels after which the decomposed frequencies were predicted
independently using the ARFIMA model. From the findings, it was realised that the higher the
level, the better the prediction. The independent predictions are then summed up together to form
the final prediction (R Core Team, 2014).

The study focused on two sets of data for modelling. In the first dataset is the original 10-
minute wind speed data which was modelled and predicted without any transformation. This
was achieved through the "forecast" and "stats" packages found in "R-Statistical software" that
were used in fitting the ARFIMA and AR models to the 10-minute wind speed data. The optimal
parameters p, d and q for ARFIMA and p for AR and the respective predictions were accom-
plished using the inbuilt functions in these packages (R Core Team, 2014; George Athanasopou-
los et al., 2014). In the second dataset, the original 10-minute wind speed data were subjected
to wavelet transformation. Wavelet transformation was achieved using the Maximal Overlap
Discrete Wavelet Transform (MODWT) built in the "waveslim" package using the modwt() func-
tion which performs level J decomposition of the input vector using the non-decimated discrete
wavelet transform. The imodwt() function performs the reconstruction of the time series from
its maximal overlap discrete wavelet transform using inverse transformation. Level J specifies
the depth of the decomposition and it must be a number less than or equal to log2(length(x))
(Whitcher et al., 2007).

5.3 Wind speed forecasting models
The two statistical methods that were considered in the prediction of wind speed, namely; the
Auto-Regressive (AR) model and the Auto-Regressive Fractionally Integrated Moving Average
(ARFIMA) model. Conventionally, persistence model has been the sole benchmark method used
in the assessment of how good the forecast performance of a model is ranging from short-term
to long-term forecast, but, Nielsen et al., (1998) suggested that it is unreasonable to apply per-
sistence model as a benchmark method when the forecast time horizon is beyond short-term. He
proposed a new reference forecast model that should be considered when evaluating the forecast
performance of a model with forecast time exceeding the short-term limit.

5.3.1 New Reference Forecast model

The new reference forecast model was proposed by Nielsen et al., (1998) as a preferable bench-
mark option to persistence model when gauging the forecast accuracy of the model exceeding
the short-term duration. The persistence model is a commonly used reference forecasting method
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that assumes that the current wind speed observation will remain unchanged for some time ahead
and is defined by,

Pt+k = Pt + εt+k (5.3.1)

where P denotes the wind speed, t denotes the time index, k denotes the look-ahead time, and ε

denotes the error term. The persistence model forecast is then given by, P̂t+k = Pt , which implies
that after k time steps ahead, the wind speed will still be equal to the current wind speed (Foley
et al., 2012).

The k−step ahead forecast obtained from a new reference forecast model is given by,

P̂t+k = akPt +(1−ak)P̄ (5.3.2)

where Pt denotes the current wind speed observation and P̄ represents the wind speed average
defined by,

P̄ =
1
N

N

∑
t=1

Pt (5.3.3)

which means that with small k, then ak will be approaching one and hence the reference will
almost equivalent to persistence method. But, with a large k and zero correlation, then ak will be
approaching zero with the forecast reversing towards the mean thus making it logical to describe
ak as the correlation coefficient between Pt+k and Pt as follows,

ak =

1
N

∑
N−k
t=1 (Pt− P̄)(Pt+k− P̄)

1
N

∑
N−k
t=1 (Pt− P̄)2

(5.3.4)

which implies that ak will lower the mean squared error for the new reference model (Nielsen
et al., 1998).

5.3.2 Auto-Regressive model

An Auto-Regressive model is just like a multiple regression model whereby the dependent vari-
able depends on a set of predictor variables. In an Auto-Regressive model, the predictor variables
comprises of lagged time series. It is a popular model for time series prediction which uses a
linear combination of p past observations and a random error. For instance, an AR(p) model is
defined by,

Xt = c+φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p + εt (5.3.5)

which in generalised form will be given by,

Xt = c+
p

∑
i=1

φiXt−i + εt (5.3.6)

where c is a constant, φ
′s
i are the suitably estimated model coefficients, t ∈ {p, . . . ,n}, and {εt} is

independent and identically distributed random variable at time t (Box et al., 2008).
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FIGURE 5.1: Estimates of the prediction variance of the time series that is not explained by the
autoregressive model for the three methods.

Levinson-Durbin algorithm in AR parameter estimation

Several methods have been put forward for estimating parameters of an Auto-Regressive model,
namely; Yule-Walker method, Ordinary least squares method, Maximum likelihood estimation
method and the Burg’s method. On comparing the location and time averaged error variance
for four methods listed above, the results showed a decreasing residual variance with decreasing
frequency such that Yule-Walker method exhibited a higher error variance while the Maximum
likelihood estimation method failed to converge for some of the wavelet decomposed frequency
components. On the other hand, the ordinary least squares method and the Burg’s method showed
reasonable level of robustness in estimating the parameters with Burg’s method performing better
than the ordinary least squares method as shown in Fig. 5.1.

Due to the robustness exhibited by the Burg’s method, it was adopted for the estimation of the
parameters as implemented in the stats package of R (De Hoon et al., 1996; R Core Team, 2014).
Burg method fits an Auto-Regressive model to the input data through minimization of the forward
and the backward prediction errors while constraining the AR parameters to satisfy the Levinson-
Durbin recursion thus providing more stable and robust model parameter estimates (Tamazin
et al., 2013). The ultimate goal in forecasting is to forecast the value of Xt+1 given the past
observations Xt ,Xt−1,Xt−2, · · · ,X2,X1, and the best linear predictor is defined by,

Xt+1|t = PX1,··· ,Xt (Xt+1) = Xt+1|t,··· ,1 =
t

∑
i=1

φt,iXt+1−i (5.3.7)

where φ
′s
t,i are chosen such the the mean squared error is minimized and are solutions to the

equation, φt,i
...

φt,t

= E
[
XiX j

]−1 E
[
Xt− jXt+1

]
(5.3.8)
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Using the standard methods, like Gauss-Jordan elimination, to solve this system of equations
requires O(t3) operations. However, since Xt is a stationary time series, thus E

[
XiX j

]
is a Toeplitz

matrix, by using this information in the 1940’s Norman Levinson proposed an algorithm which
reduced the number of operations to O(t2). In 1960’s, Jim Durbin adapted the algorithm to time
series and improved it.

To outline the algorithm, the best linear predictor of Xt+1 given the past observations
Xt ,Xt−1,Xt−2, · · · ,X2,X1 as defined in equation 5.3.7 is given by,

Xt+1|t =
t

∑
i=1

φt,iXt+1−i (5.3.9)

The mean squared error is r(t + 1) = E
[
Xt+1−Xt+1|t

]2
and given that the second order sta-

tionary covariance structure, the idea of the Levinson-Durbin algorithm is to recursively es-
timate φt,i; i = 1, · · · , t given that φt−1,i; i = 1, · · · , t−1 which are the coefficients of the best
linear predictor of Xt given Xt−1,Xt−2, · · · ,X2,X1. Suppose that the auto-covariance function
c(k) = cov[X0,Xk] is known, then the Levinson-Durbin algorithm is calculated using the follow-
ing recursion,

• Step 1:

φ1,1 =
c(1)
c(0)

and,

r(2) = E
[
X2−X2|1

]2

= E
[
X2−φ1,1X1

]2
= 2c(0)−2φ1,1c(1)

(5.3.10)

• Step 2: For i = t,

φt,t =
c(t)−∑

t−1
i=1 φt−1,ic(t− i)

r(t)
φt,i = φt−1,i−φt,tφt−1,t−i f or i ∈ {1,2, · · · , t−2, t−1}, and

r(t +1) = 2c(0)−2φ1,1c(1)

(5.3.11)

The recursion in equation 5.3.11 above can be verified using a proof based on projections as de-
scribed below; Suppose that {Xt} is a stationary time series with mean zero and auto-covariance,
c(k) = E [XkX0]. Let PXt ,Xt−1,··· ,X3,X2(X1) denote the best optimum linear predictor of X1 given
Xt ,Xt−1, · · · ,X3,X2 and PXt ,Xt−1,··· ,X3,X2(Xt+1) denote the best optimum linear predictor of Xt+1
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given Xt ,Xt−1, · · · ,X3,X2. According to stationarity, the following predictors have the same coef-
ficients,

Xt|t−1 =
t−1

∑
i=1

φt−1,iXt−i

PXt ,Xt−1,··· ,X3,X2(Xt+1) =
t−1

∑
i=1

φt−1,iXt+1−i

PXt ,Xt−1,··· ,X3,X2(X1) =
t−1

∑
i=1

φt−1,iXi+1

(5.3.12)

The three relations defined in equation 5.3.12 above are important components of the proof. By
recalling the objective to derive the coefficients of the best linear predictor of

PXt ,Xt−1,··· ,X2,X1(Xt+1)

based on the coefficients of the best linear predictor PXt−1,Xt−2,··· ,X2,X1(Xt). To implement this,
s̄p(Xt ,Xt−1, · · · ,X2,X1) is partitioned into two orthogonal spaces as follows,

s̄p(Xt ,Xt−1, · · · ,X2,X1) = s̄p(Xt ,Xt−1, · · · ,X2,X1)⊕ s̄p(X1−PXt ,Xt−1,··· ,X3,X2(X1)) (5.3.13)

Therefore due to no correlation, we get the partition,

Xt+1|t = PXt ,Xt−2,··· ,X3,X2(Xt+1)+PX1−PXt ,Xt−1,··· ,X3,X2(X1)(Xt+1)

=
t−1

∑
i=1

φt−1,iXt+1−i +φt,t(X1−PXt ,Xt−1,··· ,X3,X2(X1))

=
t−1

∑
i=1

φt−1,iXt+1−i +φt,t(X1−
t−1

∑
i=1

φt−1,iXi+1)

(5.3.14)

By evaluation the expression φt,t , we get,

φt,t =
E
[
Xt+1(X1−PXt ,Xt−1,··· ,X3,X2(X1))

]
E
[
X1−PXt ,Xt−1,··· ,X3,X2(X1)

]2
=

E
[
Xt+1−PXt ,Xt−1,··· ,X3,X2(Xt+1)(X1−PXt ,Xt−1,··· ,X3,X2(X1))

]
E
[
X1−PXt ,Xt−1,··· ,X3,X2(X1)

]2
(5.3.15)

The denominator is the mean squared error r(t), that is,

r(t) = E
[
X1−PXt ,Xt−1,··· ,X3,X2(X1)

]2
= E

[
Xt−PXt−1,Xt−2,··· ,X2,X1(Xt)

]2 (5.3.16)
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hence by simplification we get,

φt,t =
E
[
Xt+1(X1−PXt ,Xt−1,··· ,X3,X2(X1))

]
r(t)

=
c(0)−E

[
Xt+1PXt ,Xt−1,··· ,X3,X2(X1)

]
r(t)

=
c(0)−∑

t−1
i=1 φt−1,ic(t− i)

r(t)

(5.3.17)

which is the same as the first expression in equation 5.3.11 of the Levinson-Durbin algorithm.

To obtain the recursion for φt,i, equation 5.3.14 is used for simplification,

Xt+1|t =
t

∑
i=1

φt,iXt+1−i

=
t−1

∑
i=1

φt−1,iXt+1−i +φt,t(X1−
t−1

∑
i=1

φt−1,iXi+1)

and by comparing the coefficients we get,

φt,i = φt−1,i−φt,tφt−1,t−i for i ∈ {1,2, · · · , t−2, t−1}

which is the same as the second expression in equation 5.3.11. To get the recursion for the
mean squared prediction error, we note that by orthogonality of {Xt ,Xt−1, · · · ,X3,X2 and X1−
PXt ,Xt−1,··· ,X3,X2(X1), equation 5.3.14 is used for simplification to get,

r(t +1) = E
[
Xt+1−Xt+1|t

]2

= E
[
Xt+1−PXt ,Xt−1,··· ,X3,X2(Xt+1)−φt,tX1−PXt ,Xt−1,··· ,X3,X2(X1)

]2
= r(t)+φ

2
t,tr(t)−2φt,tr(t)φt,t

= r(t)
[
1−φ

2
t,t

]
which gives the final expression of equation 5.3.11 of the Levinson-Durbin algorithm.

For time series having predominantly deterministic character, Autoregressive model is expected
to perform better in prediction compared to other linear methods. On the other hand, a moving
average (MA) model uses a linear combination of past errors. A generalised moving average
model MA(q) of order q has the form,

xt = µ +
q

∑
j=1

θ jεt− j + εt (5.3.18)

where θ
′s

j are suitably chosen model coefficients, µ is the mean of the series and the random
errors εt− j are assumed to be independent and identically distributed with zero mean and constant
variance (Box et al., 2008).
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An autocorrelation function of the residuals is plotted to check how well the model fits the data,
and the results showed a Gaussian white noise in all the selected locations. The autocorrelation
functions of the residuals for all the sites cut off at lag 1, which implies that they are independent
and identically distributed (Granger et al., 2014). A proper model fitting and selection determines
how robust the model would be in producing reliable forecasts and several methods have been
put forward to determine the model’s accuracy and in this case, the root mean squared error was
used. Suppose that Xt denote the observed wind speed and X̂t the forecast wind speed, then the
root mean squared error is given by,

RMSE =

√
∑

n
t=1(X̂t−Xt)2

n
(5.3.19)

where t = 1,2,3, . . . ,n.

5.3.3 Auto-Regressive Fractionally Integrated Moving Average model

In time series analysis, historical data are very crucial in the development of forecasting models
used in the prediction of future values. An Auto-Regressive Fractionally Integrated Moving Av-
erage model is a special case of an ARIMA process. ARIMA model is a crucial process used in
time series analysis, and it incorporates three terms, namely;

1. Auto−Regressive(AR) term :− the Auto Regressive term is a linear regression of the current
observed time series value with lagged values of the time series. It captures the dependency
of present value and its nearest prior values.

2. Integrated(I) term : − refers to the reverse process of differencing to produce the forecast
and,

3. Moving Average(MA) term :− the Moving Average term captures the influence of random
shocks. In the real world, any set of time series data is affected by several random factors
resulting in random shocks and may memorise the previously received random shocks for
a while.

An auto-regressive model of order p and a moving average model of order q can be effectively
combined to form the more useful ARMA(p,q) model, which has the general form,

xt = c+ εt +
p

∑
i=1

φixt−i +
q

∑
j=1

θ jεt− j (5.3.20)

Using the operators,

Φ(B) = 1−φ1B−φ2B2−·· ·−φpBp

Θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq (5.3.21)

the definition of ARMA(p,q) model can be written as,

Φ(B)xt = c+Θ(B)εt (5.3.22)
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where B is the backward-shift operator so that Bxt = xt−1.

ARMA models are used in forecasting time series of stationary processes. Time series of non-
stationary processes are best modelled using integrated ARMA models or ARIMA models, which
additionally uses differencing operation to remove stationarity. The ARIMA(p,d,q) model has
the general form,

Φ(B)∆dxt = c+Θ(B)εt (5.3.23)

where ∆ = 1−B is the differencing operator and d is an integer (Box et al., 2008).

The combination of the AR and the MA terms results in an ARMA model, this model assumes that
the data are stationary, i.e. the statistical properties of data do not change over time. Although in
real life, this assumption does not hold for most of the real time series data. Thus, by introducing
the Integrated term, as in ARIMA removes the impact of non-stationary data by differencing.
Usually, the first-order differencing is usually sufficient, although higher-order differencing can
still be implemented if need be.

Consider an ARIMA(p,d,q) model, i.e. p −is the order of the autoregressive components, d −is
the number of differencing operators, and q −the highest order of the moving average term. The
only difference between the ARFIMA model and the ARIMA model is that d is allowed to take
fractionally continuous value instead of an integer value within the range of (−0.5,0.5). ARFIMA
is a generalization of ARIMA where the parameter d is allowed to have a fractional value with
the operator (1−B)d interpreted to have the binomial expansion (Brockwell et al., 2009),

(1−B)d = 1−dB+
d(d−1)

2!
B2 + · · · (5.3.24)

The possibility of a wide range of choices for the parameters p, d, q and the constants φi and θi
give the model great flexibility and wider applicability.

One of the features that distinguish a ARFIMA process from an ARIMA process is that the former
is characterised by a slow decay in its auto-correlation function compared to the latter. This fea-
ture makes ARFIMA model an attractive choice for data sets that exhibit long-range correlations
such as the wind speed data (Kavasseri et al., 2009).

Suppose that {xt} and {xt−i} denote the current and the previous 10-minute wind speeds (m/s)
respectively whereas {εt} and {εt− j} denote the current and the previous error terms respectively
at time t with i, j ∈ [1,2,3, ...) being their respective lags. Let B denote a backward shift operator
or time lag operator such that Bixt = xt−i, then, fractional-ARIMA model can be expressed as
follows;

(1−
p

∑
i=1

φiBi)(1−B)dxt = (1+
q

∑
j=1

θ jB j)εt (5.3.25)

where φi and θ j are constants, εt∼iid(0,σ2) and d ∈ (−0.5,0.5).

5.4 Results and discussion
In earlier works, we have demonstrated that random like fluctuations found in time series of
wind speed could arise from an underlying chaotic dynamics (Sreelekshmi et al., 2012), and
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FIGURE 5.2: The geographical locations, denoted by filled circles, for the 234 sites selected for
wind speed data analysis and prediction.

that in such situations, deterministic forecasting methods can make significantly accurate short-
term predictions of wind speed (Drisya et al., 2014). However, the chaotic behaviour inherently
limits the possibility of accurate long-term predictions using chaotic prediction methods due to
the exponential divergence of nearby trajectories. Wind speed time series data is the result of
an interplay between numerous dynamical factors of various scales and frequencies and with a
systematic procedure to keep track of the various frequencies it could be possible to bypass these
limitations to some extent and make fairly accurate long-term predictions taking advantage of
the underlying determinism. We demonstrated that wavelet decomposition of wind speed data
combined with simple auto-regressive prediction models could make long-term predictions as far
as a week ahead possible with root mean square error below 3 m/s.

For developing wind speed prediction models, higher resolution wind speed data are desirable.
In this analysis, we used wind speed data with 10-minute resolution for the period from Jan-
uary 2004 to January 2007 recorded at 234 different locations in the USA ranging from latitude
34.05911◦N, longitude 106.95718◦W to latitude 48.84354◦N, longitude 69.40916◦W as avail-
able from National Renewable Energy Laboratory (http://www.nrel.gov), USA as shown
in Fig. 5.2.

Our prediction method starts with an MRA of the given time series, thus decomposing it into
time series of various scales by applying MODWT with Daubechies wavelet of order 8. We have
set J = 12 giving rise to 12 detail series D j, j = 1,2, . . .12 (at scales 2 j, j = 1,2, . . .12) and the
smooth series S12 of variations at scales greater than 212. A part of this component series is then
selected as the model data for prediction which is then used to forecast several time steps into the
future using AR or ARFIMA method. The resulting series are then combined, again using MRA,
to reconstruct the original series along with the predicted values as shown in figures 5.6 - 5.3.

From figures 5.3 - 5.6, it can be noted that as the level increases, the determinism in the data
also increases. This relationship explains the reason behind improved accuracy on long-term

http://www.nrel.gov
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FIGURE 5.3: The D1−D3 frequency components from the decomposed 10-minute wind speed
data for a a time period of one week.
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FIGURE 5.5: The D7−D9 frequency components from the decomposed 10-minute wind speed
data for a a time period of one week.
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prediction achieved at lower frequencies as compared to the higher frequencies having a faster
rate of mean reversion as described in the following analogy.

Figures 5.7 and 5.8 show the results of predictions made by AR and ARFIMA models, for some
hundred hours into the future, on the wind speed data from four different locations, plotted along
with the actual data. Also plotted in the figures are the predictions by each of these models
in combination with wavelet decomposition technique as described earlier. These plots clearly
show that both the AR and ARFIMA predictions are remarkably improved when combined with
wavelet decomposition. Whereas the forecasts by the plain models diverge from the actual data
after a few time steps, when combined with wavelet decomposition, they yield reasonably accu-
rate predictions for a longer period and pick up the dynamics of the original time series more or
less reasonably.

To further investigate the reliability of this technique combining prediction models with wavelet
decomposition, and also to demonstrate their wider applicability in wind speed prediction, we
have carried out a statistical analysis of the wind speed forecasts made at a range of different
geographical locations. The analysis consists of computing and comparing wind speed prediction
errors across the 234 different locations mentioned above. We use spatial averages of prediction
errors over the various sites, as well as time averages over different periods of time at each
location, to compare the prediction accuracies of the forecast models when used directly and in
combination with wavelet decomposition. The prediction errors are measured using the root mean
squared error (RMSE) defined as follows. Suppose that from a given time series of n+k observed
values x1,x2, . . .xn+k, we choose the first n values as constituting the model data for prediction
and obtain the forecasts xp

n+1,x
p
n+2, . . . ,x

p
n+k for the next k values. The root mean squared error is

then given by,

RMSE =

√
∑

n+k
i=n+1(xi− xp

i )
2

k
(5.4.1)

For each location we obtained predictions for 1 to 9 days ahead at intervals of 30 days for the
3-year period from 2004 to 2006, using the AR or ARFIMA model alone at first and then in
combination with wavelet decomposition. Wind speed data of previous 30 days were used to
build suitable models for predictions in all cases. The time-averaged RMSE for each location
was computed by averaging over the RMSEs of the predictions at intervals of 30 days at the
location. The location averaged RMSE at a particular time was calculated by averaging over the
root mean squared errors of predictions at various locations at the time.

To compare the performance of AR and ARFIMA models in the presence of wavelet decom-
position, we computed both location and time averaged root mean squared errors for predic-
tions up to 6 hours ahead, which evaluates to 0.01627287± 0.00017 for AR model and to
0.05017721± 0.00075 for ARFIMA model respectively. We have repeated this comparison for
hourly mean wind speed data, and the results are shown in Fig. 5.9. These results indicate that
when used in combination with wavelet decomposition, the AR model fares much better, with
considerably less computational cost, than the ARFIMA model. The ARFIMA model also shows
the tendency to diverge for certain scales of the data. Hence the rest of the analysis was car-
ried out using exclusively the AR model as the base prediction tool in combination with wavelet
decomposition.
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FIGURE 5.7: Comparison of predicted values with actual data for AR and ARFIMA models
with and without wavelet decomposition. (a) Latitude: 44.34406◦N Longitude: 99.61266◦W,
prediction start time: 2004-12-26 12:10:00 (b) Latitude: 45.39850◦N Longitude: 103.51002◦W,
prediction start time: 2006-03-21 12:10:00
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FIGURE 5.8: Comparison of predicted values with actual data for AR and ARFIMA models
with and without wavelet decomposition. (c) Latitude: 44.95404◦N Longitude: 96.60688◦W,
prediction start time: 2005-09-22 12:10:00 (d) Latitude: 38.67878◦N Longitude: 98.59783◦W,
prediction start time: 2004-01-31 12:10:00
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FIGURE 5.9: Comparison of location and time averaged root mean squared errors of hourly mean
wind speed data between AR and ARFIMA models both combined with wavelet decomposition.

Figures 5.10−5.16 below show the average root mean squared errors for 1 day to 7 days ahead
predictions for both the location-averaged root mean squared errors and the time-averaged root
mean squared errors respectively.
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FIGURE 5.10: Plots of averaged root mean squared errors for 1 day ahead predictions at (a)
different locations and (b) different time intervals.
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FIGURE 5.11: Plots of averaged root mean squared errors for 2 days ahead predictions at (a)
different locations and (b) different time intervals.
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FIGURE 5.12: Plots of averaged root mean squared errors for 3 days ahead predictions at (a)
different locations and (b) different time intervals.
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FIGURE 5.13: Plots of averaged root mean squared errors for 4 days ahead predictions at (a)
different locations and (b) different time intervals.
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FIGURE 5.14: Plots of averaged root mean squared errors for 5 days ahead predictions at (a)
different locations and (b) different time intervals.
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FIGURE 5.15: Plots of averaged root mean squared errors for 6 days ahead predictions at (a)
different locations and (b) different time intervals.
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FIGURE 5.16: Plots of averaged root mean squared errors for 7 days ahead predictions at (a)
different locations and (b) different time intervals.
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The results clearly demonstrated that wavelet decomposition can significantly improve the pre-
diction accuracy of the AR model and that the performance edge of the combined model is more
or less maintained at the same level across all locations and all time periods. The order of AR
model was between 34 to 36 in almost all cases. In predictions up to 3 days ahead, the combined
model is accurate to within an average relative error of about 7−8%, which is roughly 5−6% less
than what AR model produces when used directly. For 4 to 9 days ahead predictions the accuracy
is certainly lower than the earlier set of forecasts, but the combined method of AR with wavelet
decomposition continues to deliver much better accuracy than the individual AR method.

Fig. 5.17(a) shows the overall performance of forecasting methods for predictions up to 9 days
ahead by plotting the time, and location averaged root mean squared errors against the number
of days of predictions. For comparison, we have also computed the RMSE of predictions using
the New Reference Forecast Model (NRFM), which is an effective modification of the persistence
forecast model for forecast lengths of more than a few hours (Nielsen et al., 1998). The AR
prediction based on wavelet decomposition can make relatively accurate predictions for up to a
week ahead, consistently across all locations and seasons, with an average relative error of about
11% or less. As shown in the Fig. 5.17(b) the major benefit of the method proposed in this paper
is the significant gain in accuracy of the AR model obtained by the use of wavelet decompo-
sition. Regarding location and time averaged RMSE, this gain is 60.15% for 1-day prediction
and 46.24% for 2-days prediction. Comparison of the combined model with the new reference
forecast model also shows similar performance advantage. For the week ahead forecasts, the use
of wavelet decomposition returns an average 18.25% of accuracy gain for the AR model. The
exponential decay of the accuracy gain, as seen in the figure, may be due to the chaotic behaviour
of underlying dynamics of wind speed variations (Sreelekshmi et al., 2012; Drisya et al., 2014).
Prediction accuracy of a chaotic time series is bound to decay exponentially as the time length
of the predicted value increases. However, decomposition of time series before the prediction is
seen to slow down this decay process appreciably.



Chapter 5. Week-ahead predictions 100

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1 2 3 4 5 6 7 8 9 10

R
M

S
E

 (
m

/s
)

Time (Days)

NRM
AR

AR + Wavelet

(a)

-10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

G
a
in

 (
%

)

Time (Days)

NRFM
AR 

(b)

FIGURE 5.17: (a) Location and time averaged RMSE for predictions up to 9 days ahead. (b)
Percentage gain of accuracy in terms of root mean squared errors for the AR model and the New
Reference Forecast Model (NRFM) method when used in combination with wavelet decomposi-
tion.
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5.5 Conclusion
Accurate prediction of wind speed is an important aspect of the control and management of
electricity produced at the wind farms, and consequently, wind speed forecasting has emerged as
a major research area in recent years. The majority of the techniques reported in the literature
for wind speed forecasting use linear time series models. While attractive for their computational
efficiency and simplicity, their prediction accuracy beyond a few time steps is feeble. In this
study, we have demonstrated through numerical computations that the prediction accuracy of
simple linear models can be remarkably improved, even for forecasts beyond a week, by properly
decomposing the time series before prediction. Wind speed forecasts by an auto-regressive model
combined with the wavelet-based decomposition of time series are found to be accurate within
an average error of 7% to 8% for predictions up to 3 days ahead. A statistical analysis of the
predictions made at 234 different locations reveals that time series decomposition improves the
accuracy of AR models by an average 60.15% for day-ahead forecasts and up to 18.23% for
week-ahead predictions. Since the entire analysis has been carried out on high-resolution data of
10-minute intervals, the results reported here are of greater practical relevance.





6
Diverse dynamical characteristics across the

frequency spectrum of wind speed fluctuations

Wind speed oscillations are known to exhibit varying characteristics at different time scales and
a range of models from simple persistence scheme to complex physical models has been used
to capture this contrasting behaviour. Our recent analysis has shown that a collection of auto-
regressive (AR) models fitted separately on frequency component of wind speed time series can
significantly increase the prediction accuracy indicating the inability of a single model captur-
ing the entire range of behaviour possibly due to the diverse nature of dynamical characteristics.
In this chapter we report the results of the investigation of diverse dynamical characteristics
across the wide frequency spectrum wind speed measurements. The results show the variation
of stochastic, deterministic and chaotic behaviour apart from the dimensionality of underlying
dynamics as well as the degree of fluctuations. Such an analysis would be useful for adopting
most suitable model for fluctuations at a specific range of interest or building hybrid models
capturing the entire range of behaviour. It is also demonstrated that a cluster of deterministic
models built upon separate frequency components of a wind speed time series can enhance the
prediction accuracy as much as 80%, on the average, consistently for predictions up to 12 hours
as validated by a statistical analysis of the predictions over a set of locations. The comparison
shows definite advantage of deterministic prediction models over autoregressive models. The f-
index introduced in this chapter to measure the fluctuations of wind speed over a period of time
shows that the observed seasonal variations of prediction errors can be correlated with changes
in the f-index of the component series contributed mostly by the lower scales of decomposition.

6.1 Introduction
The use of wind as a feasible, eco-friendly source of alternate energy has increased steadily over
the past several years. There are many factors that make wind energy attractive over thermal
or nuclear energy; it is available in abundance, pollution-free, sustainable in the long term and
comparably cheaper to produce with minimum recurring costs. It is estimated that if the growth
rate of wind power production continues at the present pace, it would account for about 12% of
the total energy demands in the next five years (GWEC, 2012). A major impedance to harnessing
wind energy to its full potential or the large scale deployment of windmills is the indeterminate
nature of wind. Wind power is a function of wind speed which exhibits fluctuations at all time-
scales due to numerous meteorological factors, and being able to predict wind speed and power
accurately is a key factor affecting production and transmission of wind energy at various stages.

103
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Short term forecasts ranging from milliseconds to a few hours ahead are useful in the operation
and control of wind turbines and optimal utilization of wind power at electric power grids (Wang
et al., 2012). Power trading based on bidding is common in liberalized electricity markets where
in many countries wind power is also being connected to existing electric power grids, and fore-
casts of the expected availability of wind power for the next few hours or days ahead are needed
to devise the best bidding strategy (Wang et al., 2012; Hering et al., 2010). Proper maintenance
of wind farms and transmission lines require fairly accurate forecasts of wind power up to several
days ahead (Aggarwal et al., 2013; Lei et al., 2009). Short and medium term predictions of wind
speed and power has therefore emerged as an important research area in recent times.

The most important factor requiring accurate prediction for a reliable forecast of wind power is the
wind speed, for which numerous models and methods have been proposed in the literature. The
classical methods based on physical models built using various atmospheric parameters, though
useful for long term predictions under stable atmospheric conditions, are unsuitable for the needs
of the wind power industry which require predictions at much smaller time scales than what
these models are meant for (Potter et al., 2006). Most of the methods reported in the literature
use statistical models which use moving averages of past data or their probability distribution for
making future predictions (Kavasseri et al., 2009; Hennessey Jr, 1977; Celik, 2004; Jiang et al.,
2013; Shu et al., 2015). These methods are attractive for their universal applicability across most
topographical conditions but do not significantly improve on the prediction accuracy compared to
the elementary method of persistence (Sfetsos, 2002; De Giorgi et al., 2011). A simple modified
version of persistence method known as reference forecast model is available for forecast length
more than a few hours (Nielsen et al., 1998). Models based on artificial neural networks are
reported to offer better prediction accuracy (Liu et al., 2013; Mohandes et al., 1998; Bilgili et
al., 2007; Monfared et al., 2009), but this improved performance is not maintained across all
locations (Soman et al., 2010). Attempts to improve the prediction accuracy of existing methods
have also led to the development of hybrid models which combine different approaches to get
over the weakness of each, such as mixing short-term and medium-term models or physical and
statistical models. This often leads to better results than using each method separately (Soman
et al., 2010; Liu et al., 2014; Haque et al., 2015; Liu et al., 2012; Celik et al., 2013; Liu et al.,
2015).

In earlier works we had shown that the random like fluctuations in wind speed could also be due
to an underlying dynamics which is deterministic and chaotic (Sreelekshmi et al., 2012). Wind
speed dynamics is one of a few systems exhibiting chaotic behaviour outside laboratories. Ap-
plied on a time series of past data sampled at intervals of 10 minutes, the deterministic non-linear
prediction methods could predict wind speed with remarkable accuracy up to one hour and rea-
sonably good accuracy up to three hours. The performance of these models were found to be
consistent across different topographical locations and over various seasons (Drisya et al., 2014).
Since a chaotic attractor is an unlimited reservoir of unstable periodic orbits, a chaotic wind speed
time series may exhibit a wide frequency spectrum and the numerous factors that affect the wind
speed dynamics could manifest at various levels of this frequency spectrum. Some of these factors
such as those arising from the rotation of earth and its revolution around the sun would be mostly
deterministic, while those due to temperature or pressure variations could be possibly stochastic
and the contributions by measurement errors might be purely noise. The interactions among cou-
pled deterministic subsystems could also lead to chaotic dynamics resulting in behaviour which
might easily be mistaken as stochastic. A frequency-level analysis of wind speed time series is
therefore necessary to reveal the nature of the underlying dynamics that is predominant at various
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frequency ranges. As of now, such an analysis at the frequency level, for understanding the key
nature of the dynamics at various frequency ranges is not available in the literature. Apart from
this most of these studies have considered wind speed fluctuations as a single time series, ex-
cept for a couple of recent attempts to improve prediction accuracy using wavelet decomposition
(Kiplangat et al., 2016; Tascikaraoglu et al., 2016). Our recent analysis shows that a cluster of
AR models representing wind speed fluctuations at separate frequency range can better predict
oscillations up to a week ahead in comparison to a single AR model for the entire frequency range
indicating the possible diversity of dynamical characteristics at different frequency components
(Kiplangat et al., 2016). The objective of this work is two-fold: to investigate the variation of
dynamical characteristics and to demonstrate that a cluster of deterministic models, one for each
frequency component, can better predict future oscillations compared to a single deterministic
model fitted to wind speed time series for the entire range of frequencies. We also investigate if a
proper deterministic model such as linear first order (LFO) method has an edge over AR model for
short term prediction when fitted to frequency components independently. More specifically, we
use wavelet decomposition to split the time series into component series of various frequencies
(or inversely as scales/levels) and analyse each component for its deterministic characteristics,
chaotic behaviour, dimensionality of underlying dynamics, variation of predictability with sea-
sons, degree of fluctuations and the effect of fluctuations on the prediction accuracy etc. We
report the results of the detailed analysis of the nature fluctuations of wind speed across its wide
frequency spectrum and attempt to identify the regimes where the dynamical characters are pre-
dominantly stochastic, deterministic and chaotic. We also demonstrate that the performance of
the deterministic prediction tools can be significantly improved by suitably combining them with
wavelet decomposition. The additional gain of accuracy obtained by the use of wavelet filter on
the deterministic prediction scheme is above 75% on the average throughout a 12-hours ahead
prediction period. The comparison of prediction of linear first order (LFO) method and auto re-
gressive (AR) model, both in combination with wavelet decomposition, shows about 60% gain
of accuracy of LFO method over AR model for the interim range. We also introduce an index
to quantify the fluctuation of wind speed over a period and investigate how it is correlated with
prediction accuracy across seasons and frequencies. The analysis has been carried out on the
wind speed data of 10 minute resolution available from National Renewable Energy Laboratory
web site (http://www.nrel.gov).

6.2 Chaotic time series
The bounded aperiodic behaviour of a system that is sensitive to initial conditions is called chaotic
(Ott, 2002). Sensitive to initial conditions means that trajectories diverge from one another expo-
nentially fast, so that initially nearby trajectories may end up at far away places on the attractor
within a short time. The time series of a dynamic quantity generated by the system may resemble
the output of a stochastic system that exhibits random fluctuations. It is possible to detect and
analyse chaos in a system by systematically investigating a single time series generated from the
system, using the technique of attractor reconstruction with delay co-ordinates (Packard et al.,
1980). There are several characteristics of the reconstructed system which can be used to analyse
the dynamics of the underlying system in great detail.

There may be many variables contributing to the dynamics of a chaotic system but the trajec-
tories eventually converge to an attractor, which though complex in its structure, may be low-
dimensional with a non-integral dimension. Using delay co-ordinates, it is possible to calculate
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an estimate for the dimension of the attractor of the underlying (Grassberger et al., 2004). A
preferred choice for such an estimate is the correlation dimension (Hegger et al., 1999) which is
computed from the correlation sum defined by

C(ε,m) =
2

N(N−1)

N

∑
i=1

N

∑
j=i+1

Θ(ε−‖yi− y j‖),

where Θ(a) = 1 if a > 0, Θ(a) = 0 if a ≤ 0. yi is the delay vector for the time series x(t), given
by

y(t) = (x(t), x(t− τ), . . . ,x(t− (m−1)τ),

for appropriate choices of the delay τ and the embedding dimension m. The correlation dimension
is then calculated from the local slopes of C(ε,m) versus ε for various values of m. For a time
series coming from a deterministic chaotic system the correlation dimension may be much smaller
compared to the embedding dimension, but if it originates from a stochastic system the two values
may be of comparable magnitude.

The exponential rate of divergence of trajectories can be numerically measured by the so called
Lyapunov exponents in the principal directions, and the existence of a positive Lyapunov expo-
nent is considered a strong evidence for chaos in the system. Kantz algorithm can be used to
compute an estimate for the largest Lyapunov exponent of a system from a time series originating
from it (Kantz, 1994). This proceeds by first computing a stretching factor S(∆n) defined by

S(∆n) =
1
N

N

∑
n0=1

ln

(
1

‖U(yn0
)‖

× ∑
yn∈U(yn0)

∥∥∥yn0+∆n− yn+∆n

∥∥∥)

where yn0 is a fixed point in the embedding space and yn are the points in a neighbourhood U(yn0)
of yn0 . If the plot of S(∆n) versus ∆n shows a linear growth for various values of m then its slope
gives an estimate for the maximum Lyapunov exponent.

6.3 Wavelet decomposition
Wavelet transform allows us to convert a data or function in the time domain into a representation
involving different layers of frequency levels. The frequency components can then be observed
and analysed at a resolution matched to its frequency. This is made possible by using, for the de-
composition of the data, a basis consisting of simple functions called wavelets, which are small
waves localized both in time and scale, all of which can be generated by scaling and translating
a single base wavelet called ‘mother wavelet’. While the lower scale components give the finer
microscopic details of the data at higher resolutions, the higher scales yield the grosser features at
lower resolutions. Wavelets are most suited for the study of data such as that of wind speed which
are inherently multi-scale due to contributions from numerous atmospheric and topographic fac-
tors.
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FIGURE 6.1: Diagram showing temporal fluctuations of signal x(t).

Mathematically, a wavelet is a square integrable function ψ(t), which is non-zero only on a finite
interval and satisfies the admissibility condition (Daubechies et al., 1992),

0 < cψ =
∫

∞

−∞

|ψ̂(ω)|
|ω|

< ∞

where ψ̂(ω) is the Fourier transform of ψ(t). Wavelet transform uses a family of orthonormal
functions ψ j,k(t) which are all generated by suitable dilations and translations of an appropriate
mother wavelet ψ(t);

ψ j,k(t) = s− j/2
ψ(s− jt− kτ), j,k ∈ Z

where s > 1 and τ are fixed dilation and translation factors. The so called dyadic sampling
corresponds to the choice s = 2 and τ = 1.

The discrete wavelet transform (DWT) of a function x(t) in the time domain is a discrete system
of numbers defined by

Wx(i, j) =
∫

∞

−∞

x(t)ψ∗j,k(t)dt, (i, j ∈ Z).

Conversely, if the set of wavelets ψ j,k(t) forms an orthogonal basis, the function x(t) can be
expressed as a linear combination of these transforms, called the discrete wavelet decomposition
of x(t), given by

x(t) =
1

cψ
∑

j,k∈Z
Wx( j,k)ψ j,k(t).

The discrete wavelet transform is well suited for analysis of data given in the form of a time series.
If the data is to be decomposed into J levels of different scales, DWT requires the sample size
N of the data to be a multiple of J. This restriction is removed in a special form of DWT called
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FIGURE 6.2: Delay reconstruction (xn versus xn−d) for each component of wavelet decomposed
time series at location Latitude: 34.9842◦N, Longitude: 104.03971◦W. The delay d was estimated
for each component using mutual information and auto-correlation.

Maximal Overlap DWT (MODWT), but this makes MODDWT highly redundant over traditional
DWT. This redundancy incurred by the use of MODWT is, however, amply compensated by the
possibility of better comparison of the series with its decomposition and MODWT has more or
less become a standard in analysis of data using wavelet decomposition (Percival et al., 2006).

The decomposition using MODWT can be formulated as a multi-resolution analysis (MRA) in
which the data is expressed as a sum of a smoother component and a set of components that give
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details of the data at progressively higher resolutions. For an N-dimensional vector X representing
the given data such a decomposition corresponding to J scales, τ j, j = 1,2, . . .J reads as (Percival
et al., 2006)

X =
J

∑
j=1

D j +SJ

The vector D j captures the average variations on a scale of τ j, whereas SJ contains the smoother
component of the data involving the averages at scales 2τJ and higher (Percival et al., 2006).

6.4 Fluctuation Index
In general signals having lesser temporal variations are amenable to better modelling and pre-
diction. The degree of fluctuations may vary with different periods or seasons depending on the
local dynamics. To quantify the temporal fluctuations, we introduce an index named fluctuation
index, shortly f-index, defined for a signal x(t) over a period (t1, t2) as the fraction of the excess
curve length of the signal over the length of a signal of constant magnitude. Thus,

f-index =
L−Lconst

Lconst
(6.4.1)

where

L =
∫ t2

t1

√
1+
(

dx
dt

)2

dt (6.4.2)

is the arc-length of the signal over the period considered and Lconst = t2− t1 is the corresponding
length of a signal of constant magnitude. (c. f. Figure. 6.1). In the next section we analyze how
the f − index of the wind speed series affects the prediction accuracy and its seasonal character-
istics.

6.5 Results and discussion

6.5.1 Analysis of decomposed data

The fluctuations in wind speed dynamics is the result of the interplay between numerous factors
at various frequencies, partly random and partly deterministic. As a first step towards better
understanding the nature of dynamics at various frequency ranges, we decompose the time series
of wind speed into component series of suitably chosen frequency levels using wavelet transform.
This is achieved by an MRA of the given time series using MODWT with Daubechies wavelet of
order 8 and number of scales J = 15, which decomposes it into 16 time series, comprising of 15
detail series D j at scales 2 j, j = 1,2, . . .15 and a smooth series S15. Each of these time series then
embodies the dynamical properties of the wind speed series at a certain band of frequencies active
in the system. More insight into the nature of the dynamics at each frequency subsystems may
be obtained by analysing each component series separately. Accordingly, for each component
series we reconstruct the attractor of the underlying system in a suitable embedding space using
the standard technique of attractor reconstruction with delay co-ordinates. More details about
these methods and the subtleties involved are discussed in (Sreelekshmi et al., 2012; Drisya et al.,
2014).
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FIGURE 6.3: The mean values of the fraction of false nearest neighbours of the surrogates with
standard deviation for levels 2-9 at location Latitude: 34.9842◦N, Longitude: 104.03971◦W.

Figure. 6.2 shows the delay representations of the attractor of the underlying system correspond-
ing to each of the component time series constructed with suitable choices of the embedding
parameters. A progressive variation in the structure of the attractor from more complex at higher
frequency ranges to nearly periodic towards the lower end of the frequency spectrum can be
clearly seen in the figure. The dynamics at higher frequency bands (lower levels) is evidently
more complex than at lower frequencies. The complex structure of the attractors, at lower levels,
could safely be assumed to be due to noise processes. However, the presence of complex dynam-
ics at the intermediate ranges of frequencies could be more due to an underlying system which is
deterministic and chaotic. The possibility of chaotic dynamics of wind speed time series has been
demonstrated elsewhere (Sreelekshmi et al., 2012; Drisya et al., 2014), and here we can demar-
cate the frequency ranges that corresponds to stochastic, deterministic and chaotic behaviour of
the underlying system by analysing the individual time series obtained by wavelet decomposition.
To discriminate chaotic dynamics from stochastic behaviour we carried out a surrogate data test
on each of the component series obtained by decomposition of a typical wind speed time series.
The surrogate data test is a formal statistical method which involves testing the null hypothesis
that the given time series is a linear Gaussian noise process. As first step in this direction we
compared the fraction of false neighbours of the original time series of each frequency compo-
nent was compared with 40 surrogates obtained using the algorithm of Schreiber and Schmitz
(Schreiber et al., 1996) for the location given by Latitude: 34.9842◦N, Longitude: 104.03971◦W.
Figure. 6.3 shows the fraction of false nearest neighbours for each of the original component
time series along with the mean of the corresponding values with standard deviation for the 40
surrogates. The validity of the null hypothesis is tested based on the value of the significance of
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FIGURE 6.4: Plot of the significance of difference S versus embedding dimension for levels 4-8.
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FIGURE 6.5: Variation of Lyapunov exponent for each wavelet component averaged over 212
sites.

difference computed according to (Mitschke et al., 1993)

S =
µ−µorig

σ
(6.5.1)

where µ and σ mean and standard deviation of fraction of false neighbours calculated for sur-
rogates and µorig mean of the original. The null hypothesis can be rejected if S > 2 with 95%
confidence level. The plot of S for various levels is given in Figure. 6.4.
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FIGURE 6.6: Variation of correlation dimension for each wavelet component averaged over three
typical sites.
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FIGURE 6.7: Estimated embedding dimension for each wavelet component.

It is seen that the values for the original data and the surrogate means start to differ from level
five onwards. This indicates that while the high frequency variations up to level five are generally
stochastic and may be considered as contributions by noise processes, the lower frequency varia-
tions embodied in the component series beyond level five are essentially deterministic in nature.
This analysis, therefore, helps us to delineate frequency ranges of variations which arise due to
random sources from those with underlying dynamics deterministic and chaotic.
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FIGURE 6.8: The average over 40 locations of significance of difference of one step predication
error at each level of the original and surrogates.

In order to validate this statistically we have computed the significance difference one step pre-
diction error of the original and surrogates for each level at 40 locations. The average over 40
locations of S with error bar for each level is plotted in Figure. 6.8. It can be seen from the figure
that fluctuations up to level 3 may have arised from noise process.

Further confirmation as to the chaotic nature of the intermediate frequency components as well
as a quantitative description of degree of chaoticity may be obtained by computing the Lyapunov
exponents of the component subsystems. For sample computations we decomposed the wind
speed time series from three typical sites using wavelet transform and computed the maximum
Lyapunov exponents at each level and averaged over the three locations. Figure. 6.5 plots these
averages for the various levels of decomposition. It can be seen from Figure. 6.5 that Lyaponov
exponents decrease with increasing level, from a slightly high positive value at lower levels to
nearly zero around higher levels. At lower levels these results corroborates the results of surrogate
data test that the higher frequency variations are due to noise. At the intermediate levels this
provides further evidence of a deterministic system exhibiting chaotic dynamics and at the lowest
frequencies the dynamics is deterministic but not chaotic. Moreover, the variation of Lyapunov
exponents with decomposition levels also suggests that more accurate predictions into longer
periods of time would be possible at longer frequency ranges. This means that for long term
wind speed predictions, which the wind power industry needs for long term energy management,
using low frequency components as model data would yield better results. These results are
also supported by the estimates of correlation dimension at various levels shown in Figure. 6.6.
The diminishing dimensionality with increasing level is evident in the figure. The estimated
embedding dimensions for a typical site also shows similar behaviour with a plateau region after
level 7 as seen in Figure. 6.7. The plateau region indicates that the dynamics at these levels could
have more or less identical characteristics.
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FIGURE 6.9: Comparison of LFO and LFO with wavelet decomposition predicted values with
actual values of wind speed. The symbols are plotted only at every one hour for legibility. (a)
Latitude: 45.87565 Longitude: -103.30938 (b) Latitude: 34.85728 Longitude: -103.61320.

6.5.2 Improved predictions

Given a series of n observations x1,x2, . . . ,xn, the time series methods utilize these observed
values for predicting the likely values of the series a few time steps into the future, viz., xn+k,
k = 1,2, . . .. Most of these methods use suitable combinations of the past values or past errors or
their probability distributions to predict future values. Non-linear methods, on the other hand, try
to approximate the evolution of the delay vector

xn = (xn, xn−τ , . . . ,xn−(m−1)τ),
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FIGURE 6.10: (a) RMSE of predictions for the period from 2004 to 2006 at an interval of 30
days averaged over 212 locations. (b) RMSE at 212 locations averaged over predictions at 30
days apart during the same period.

in the phase space. Thus for a deterministic system we can expect a functional relation of the
form

xn+1 = f (xn).

where f would be non-linear for a chaotic system. The local first order (LFO) method approxi-
mates f in each time step by a linear model fitted to the neighbors of xn in an ε neighbourhood
Uε(xn), and has the form

xn+1 ≈ An · xn +bn.



Chapter 6. Diverse dynamical characteristics 116

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 10  20  30  40  50  60  70

L
o

c
a

ti
o

n
 a

n
d
 T

im
e
 A

v
e

ra
g

e
d
 R

M
S

E
 (

m
/s

)

Time (hour)

(a)

LFO + Wavelet
LFO

 30

 40

 50

 60

 70

 80

 90

 12  24  36  48  60  72

G
a
in

 (
%

)

Time (hour)

(b) LFO + Wavelet

FIGURE 6.11: (a) Location and time averaged RMSE for predictions up to 72 hours ahead. (b)
Percentage gain of accuracy in terms of RMSE for LFO method in combination with wavelet
decomposition over LFO method. The symbols are plotted only at every two hour for legibility.

The method proceeds in steps, using a possibly different local linear model for each time step,
thus giving a non-linear model globally.

In previous works (Drisya et al., 2014) we have shown that where the wind speed dynamics is
chaotic, the non-linear deterministic methods can yield accurate short term predictions of wind
speed up to 3 hours ahead with better prediction accuracy and longer duration of prediction than
the traditional f-ARIMA methods. Here we demonstrate that the accuracy of the deterministic
prediction schemes can be further improved by using wavelet decomposition of the model data.
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The possibility of using wavelet decomposition for improving prediction accuracy of existing
models had been demonstrated earlier for the case of simple linear forecasting models of wind
speed (Kiplangat et al., 2016). To make comparisons easier, we use the same data set used in
our previous analysis, namely the wind speed data of 10 minute resolution, for the period from
January 2004 to January 2007, for 212 locations available from National Renewable Energy
Laboratory (http://www.nrel.gov), USA.

For each set of predictions, we use a set of 4320 past data points to build the model and pre-
dict several time steps into the future, first using the LFO method alone and then using LFO
combined with wavelet decomposition. In the combined method, the given time series is first de-
composed into several component series at various scales (levels) using wavelet transform MRA
as described earlier. Each component series thus obtained is then predicted several time steps
into the future using LFO method, and the resulting series are then combined using MRA again
to reconstruct the original series along with the predictions.

In applying the LFO method, the choice of the delay τ and embedding dimension m are impor-
tant, which will also vary depending on the location of the data. The traditional methods based
on autocorrelation function and fraction of false nearest neighbours need not always give the best
of predictions (Domenico et al., 2013), so we used optimum values of τ and m for comparison
of the prediction accuracy. Figure. 6.9 shows a comparison of typical predictions, for about 30
hours ahead at a couple of locations, first using LFO method alone and then by using wavelet
decomposition before applying the prediction algorithm as described before. The results clearly
show remarkable improvement in the performance of LFO when combined with wavelet decom-
position.

6.5.3 Statistical analysis of predictions

We now extend the preceding analysis of the predictions using LFO with and without wavelet
decomposition to a total of 212 different locations depicted in fig, and carry out a statistical
analysis of the prediction errors to determine the consistency and practical applicability of the
technique. Three types of averages of forecast errors are used in these calculations, namely the
spatial averages of errors over the different locations, the time averages at each location over
different periods of time and both time and location averaged forecast errors. Since the range of
values of wind speed exhibit considerable variations over locations and time we use as a measure
of prediction error the root mean squared error (RMSE) defined as follows. Suppose from a given
time series of n+k observed values x1,x2, . . .xn+k, we use the first n values for building the model
to forecast the the next k values xp

n+1,x
p
n+2, . . . ,x

p
n+k, then the RMSE is then given by

RMSE =

√
∑

n+k
i=n+1(xi− xp

i )
2

k

At each location we obtained forecasts for up to 72 hours, at several points of time 30 days
apart, for a period of 3 years form 2004 to 2006, first using LFO method alone and then using
LFO combined with wavelet decomposition, and computed the corresponding RMSEs. Each set
of these errors are averaged over the various locations and Figure. 6.10(a) shows errors for 12
hour prediction for various points of time, 30 days apart, for the 3 year period. Figure. 6.10(b)
shows the RMSEs averaged over time at each location and plotted against the locations. As is
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FIGURE 6.12: (a) Comparison of location and time averaged RMSE of AR model and LFO
method both in combination with wavelet decomposition for predictions up to 72 hours ahead.
(b) Percentage gain of accuracy in terms of RMSE of predictions of LFO method over AR model,
both in combination with wavelet decomposition.

clear from the figures the combined prediction method consistently maintains better accuracy
across all locations and over all periods of time comprising various seasons. Figure. 6.11(a)
shows the RMSEs averaged over both time and location for predictions up to 72 hours ahead,
and Figure. 6.11(b) the gain in accuracy, as measured by the averaged RMSE, earned by the use
of wavelet decomposition before applying prediction algorithm. The combined method returns
an average 80% gain in accuracy for 12 hours ahead predictions but beyond 12 hours, while the
performance edge is maintained, the gain in accuracy gradually falls off. The improvement in the
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FIGURE 6.13: Location averaged RMSE of 12 hour predictions of LFO method with wavelet
decomposition at an interval of 30 days and corresponding location averaged f -index. The corre-
lation between RMSE and f-index is 0.697.

performance of LFO when paired with wavelet decomposition can be explained on the basis of
Figure. 6.5, which shows that the maximum Lyapunov exponent decreases as the decomposition
scale increases (frequency decreases). Smaller values of Lyapunov exponents indicate better pre-
dictability, hence component series at higher scales can be predicted more accurately for longer
periods. So when forecasts on component series are made separately and recombined, the overall
prediction accuracy benefits from the better predictions on the higher level components.

We have also compared the performance of the LFO model with that of the Auto Regressive (AR)
model for predictionKiplangat et al., (2016), both in combination with wavelet decomposition.
We might expect the LFO method to perform better as it captures the dynamics in the embedded
space whereas the AR model is based on a linear combination of previous data values which
does not take into account the dynamics or dimension of the phase space of the underlying sys-
tem. Figure. 6.12 plots RMSE of predictions of both methods and gain of prediction accuracy
of LFO method over AR model. As can be noted from these figures, for short term predictions
LFO method is comparably better than the AR model, but with increasing prediction time the
predictions by the LFO falls off to the level of AR model.

A closer look at Figure. 6.10(a) and Figure. 14 in reference Drisya et al., (2014) would reveal
smaller variations in the prediction errors with change in seasons, the prediction error being the
lowest during winter. This may be explained in terms of the seasonal variations in the extent of
fluctuations exhibited by the component series, especially at lower scales dominated by noise.
The degree of fluctuations of the series at each scale of decomposition may be quantified by the
monthly standard deviation of variations, or more faithfully by using the fluctuation index ( f -
index) introduced earlier. For comparison, the location averaged RMSE of predictions of LFO
method in combination with wavelet decomposition along with f -index of model data (without
decomposition) is plotted in Figure. 6.13. The estimated value of correlation between these two
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is 0.697. As is evident from the figure, the prediction accuracy is comparatively higher in winter
where f -index relatively low. To further examine the impact of seasonal variations on different
frequency components, we have computed the standard deviation and f -index of corresponding
model data for each components and plotted in Figure. 6.14. It is seen that at lower scales there is
considerable variations in the range of fluctuations, highest during summer and lowest in winter.
This could be due to the impact of solar radiations, the effect of which is the highest during sum-
mer, and its diurnal nature which contributes to the high frequency variations in the lower scale
components. This means that the seasonal variations in the prediction accuracy of wind speed
could be more due to the frequent fluctuations at the lower scale components resulting from solar
activity, and could be related to the seasonal variations of the fluctuation index meaningfully. This
can in turn be utilized for developing better season dependent models for wind speed forecast.

6.6 Conclusions
The dynamical system underlying the apparent random oscillations of wind speed could be the
resultant of many coupled sub-systems. These subsystems may vary from very complex to simple
periodic phenomena. We have presented an analysis of wind speed fluctuations based on the dy-
namics embodied by various ranges of constituent frequencies. The study bases on the wind speed
data from a set of locations and uses wavelet transform technique to decompose the original time
series into a set of constituent series at various scales associated with different frequency ranges.
Each of these component series were then analysed using tools of non-linear analysis such as at-
tractor reconstruction, Lyapunov exponents and correlation dimension along with surrogate data
analysis to differentiate stochastic behaviour from deterministic dynamics. The results provide a
broad classification of the dynamics at various scales, with the dynamics up to level five showing
purely random character while beyond five the dynamics is essentially deterministic. Even in the
deterministic realm, the dynamics is complex with strange attractors and positive Lyapunov ex-
ponents in the intermediate range of frequencies showing that the underlying dynamics is chaotic
at these levels. The lowest range of frequencies at the highest scales of decomposition, however,
are almost non-chaotic and possibly results from periodic phenomena.

Another advantage of using wavelet decomposition of wind speed series is that when used in
conjunction with deterministic time series prediction methods, it can significantly improve the
prediction accuracy of the latter. Where wind speed dynamics is predominantly deterministic,
forecast tools such as LFO have been shown to be very effective in short to medium term wind
speed predictions. However, as we have shown in this work, using wavelet decomposition prior
to prediction can significantly improve the prediction accuracy as well as duration of prediction.
The gain in accuracy obtained by the use of wavelet decomposition goes as much as 80% on
the average on predictions up to 12 hours ahead. A statistical analysis of the predictions made
at a total of 212 different locations asserts that this improved performance of the new model is
consistent across different locations and periods of time. The LFO method in comparison with
AR model, both in combination with decomposition, is better upto 20 - 60% over the AR model
for up to a day ahead prediction. However, with increasing prediction time, the predictions by
the LFO method falls off to the level of AR model. The analysis also reveals variations of the
accuracy of predictions on a finer scale with change in seasons, presumably due to the diurnal
nature of solar activity, which can be related to the degree of fluctuations of the component series
at lower levels of decomposition.
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FIGURE 6.14: (a) Standard Deviation of the wind speed variations for each month at different
level and (b) Fluctuation index for each month at different level at location latitude: 34.9842◦N,
longitude: 104.03971◦W.

The change in the fundamental character of the dynamics of wind speed data across the decom-
position levels also opens up the possibility of using hybrid models for prediction, where the
component series at each level of frequency range can be predicted using tools most appropriate
for the dynamical characters exhibited by that particular series, and then reconstructed to yield
better forecast results. This will be explored in future works.





7
Summary

In this work, (a) we have carried out a detailed non-linear time series analysis of the daily mean
wind speed time series for eleven years of nine locations across Indian subcontinent with the
objective to investigate the dynamical characteristics of the underlying dynamical system, (b) we
demonstrated that deterministic forecasting methods could make accurate short-term predictions
of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour
and (c) we showed the existence of diverse dynamical characteristics across the frequency spec-
trum of wind speed fluctuations and demonstrated that a cluster of deterministic models built
upon separate frequency components of a wind speed time series can enhance the prediction ac-
curacy as much as 80%, on the average, consistently for predictions up to 12 hours as validated
by a statistical analysis of the predictions over a set of locations. We know that the wind speed
variations are affected by myriads of factors. A good number of tools have been developed for
the prediction of wind speed variations. A significant share of these models assumes that wind
speed oscillations are stochastic in nature. However, results of the analysis of wind speed data
from several locations in India over a period of one decade strongly suggest that the fluctuations
are indeed deterministic, low-dimensional and chaotic opening the possibility of developing ac-
curate short-term prediction tools based on deterministic models. Irrespective of the location, the
estimated values of the correlation dimension and the fraction of false neighbours clearly shows
the low-dimensionality of the system. The wind speed time series under consideration yield a
positive maximum Lyapunov exponent revealing the chaotic behaviour of the system. The de-
tailed surrogate data test has also been carried out on the wind speed data from several locations,
and the results rule out the possibility of the underlying dynamics being stochastic, suggesting
the deterministic chaotic nature as the reason for the apparent temporal fluctuations. The colour
noise test conducted also corroborates the deterministic character of the system. The most inter-
esting point is that the wind is one of the natural system showing chaotic behaviour. The analysis
fails to show any significant dependence of the degree of chaos on the variation of latitude and
longitude.

After establishing the deterministic character of the system, we next attempted to develop better
deterministic short-term prediction models. In the third chapter, we demonstrate the suitability of
deterministic methods in making short-term forecasts of wind speed based on past data. For the
analysis, we utilised finer time resolution wind speed data than the daily mean. These methods
are applicable in situations where the underlying dynamics of wind speed is chaotic leading to
random like fluctuations in the time series of wind speed. We have applied a couple of chaotic

123
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time series prediction tools (one local method and one global method) on the records of the wind
speed data of 10-minute resolution from a total of 234 different geographical locations. At each
location, we obtained 1-hour, 2-hour and 3-hour predictions at intervals of 30 days for a period of
3 years. The predictions are very accurate for up to 1 hour and fairly accurate for up to 3 hours. A
statistical analysis of the prediction errors from these locations reveals that the average prediction
error is 1.36% of the range of wind speed for 1-hour predictions, 2.99% for 2-hour predictions
and 4.15% for 3-hour predictions.

We have also compared the efficiency of the deterministic methods with predictions from the
f-ARIMA model. For each of the 234 locations 6 hour ahead prediction is obtained with both
methods at intervals of 30 days for a period of 3 years. It is observed that, compared to f-ARIMA,
the deterministic methods give better prediction accuracy for longer periods of time and capture
the dynamics of the fluctuations in the original data more faithfully. These prediction methods
are simple and computationally efficient alternatives for short-term wind speed forecasts.

In chapter 6 we investigate the dynamics of the wind speed oscillation at different frequency
levels. The dynamical system underlying the apparent random oscillations of wind speed could
be the resultant of many coupled subsystems. These subsystems may vary from very complex to
simple periodic phenomena. We have presented a detailed examination of wind speed fluctuations
based on the dynamics embodied by various ranges of constituent frequencies. The analysis made
use of the wind speed data from a set of locations and applied a wavelet transform technique to
decompose the original time series into a set of constituent series at various scales associated with
different frequency ranges. Each of these component series was then analysed using tools of non-
linear time series analysis such as attractor reconstruction, Lyapunov exponents and correlation
dimension along with surrogate data test to differentiate stochastic behaviour from deterministic
dynamics. The results provide a broad classification of the dynamics at various scales, with the
dynamics up to level five showing purely random character while beyond five the dynamics are
essentially deterministic. Even in the deterministic realm, the dynamics are complex with strange
attractors and positive Lyapunov exponents in the intermediate range of frequencies showing that
the underlying dynamics is chaotic at these levels. The lowest range of frequencies at the highest
scales of decomposition, however, are almost non-chaotic and possibly results from periodic
phenomena.

Another advantage of using wavelet decomposition of wind speed series is that when used in
conjunction with deterministic time series prediction methods, it can significantly improve the
prediction accuracy of the latter. Where wind speed dynamics is predominantly deterministic,
forecast tools such as LFO have been shown to be very effective in short to medium term wind
speed predictions. However, as we have shown in this work, using wavelet decomposition prior to
prediction can significantly improve the prediction accuracy as well as prediction horizon. On an
average for predictions up to 12 hours, the gain in accuracy obtained by combining LFO forecast
on wavelet-transformed time series goes as much as 80%. A statistical analysis of the predictions
made at a total of 212 different locations asserts that this improved performance of the new model
is consistent across different locations and periods of time. The LFO method in comparison with
AR model, both models combined with decomposed series, is better up to 20 - 60% over the AR
model for up to a day ahead prediction. However, with increasing prediction time, the predictions
by the LFO method falls off to the level of AR model. The analysis also reveals variations of the
accuracy of predictions on a finer scale with a change in seasons, presumably due to the diurnal
nature of solar activity, which can be related to the degree of fluctuations of the component series
at lower levels of decomposition.
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The change in the fundamental character of the dynamics of wind speed data across the decompo-
sition levels also opens up the possibility of using hybrid models for prediction. The component
series at each level of the frequency range can be predicted using the most appropriate tools for
the specific dynamical characters exhibited by that particular series and then reconstructed to
yield better forecasting results. This can be explored in future works.
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