MODEL QUESTION FOR FIFTH SEMESTER B.Sc MATHEMTICS

(2014 Admission)

MM 1544- Vector Analysis

SECTION-1

All the ten questions are compulsory. They carry one mark each

1. Find the gradient of $\phi(x, y)=x+y$.
2. State Green's Theorem
3. Find the directional derivative of $f(x, y)=e^{x y}$ at $(-2,0)$
4. $\mathrm{S} . \mathrm{T} \operatorname{div}(c u r l F)=0$
5. State the Conservation of Energy principle
6. Find the slope of the surface $Z=x y$ in the direction of the vector $u=i+j$ at $(1,2,2)$
7. When we say that a vector field is consertvative
8. Evaluate $\int_{C} d s$, if C is the line segment from $(0,0)$ to $(1,0)$
9. State the fundamental theorem of work integrals
10. Given that $\mathbf{r}=x i+y j+z k$. show that $\operatorname{curl}(\mathbf{r})=\mathbf{0}$

SECTION -2

Answer any eight from the following. Each question carries $\mathbf{2}$ marks

11) Use line integral to find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
12) Show that the divergence of the inverse square field $F(x, y, z)=\frac{c}{\|r\|^{3}}$ is zero
13) Evaluate $\int_{C}\left(1+x y^{2}\right) d s$ from $(0,0)$ to (1,2)along the li8ne segment that is represented by the parametric curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=2 \mathrm{t}, 0 \leq t \leq 1$
14) let $F(x, y)=2 x y^{3} i+\left(1+3 x^{2} y^{2}\right) j=\nabla \phi$. Find ϕ
15) use Green's Theorem t to evaluate $\int_{C} x^{2} y d x+x d y$ along the circular path joined the points (0,0), (1,0), and (1,2)
16) Use the divergence theorem to find the outward flux of the vector field $F(x, y, z)=z k$ across the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
17) Find curl(curl F) for the function $F(x, y, z)=y^{2} x i-3 x y z j+x y k$
18) If f and g are differentiable functions, show that $\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}$
19) Find the directional derivative of $f(x, y)=e^{-x} \cos y$ at $(0, \pi / 4)$
20)Determine whether the vector field $F(x, y, z)=(x+y+z) i+(y-x-z) j+3 k$ is conservative on some open set
20) Define an "Inverse Square Field". State Gauss Law for Inverse Square Fields
21) Find the work done by the force field $F(x, y)=x^{2} i+y^{2} j$ along the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$

SECTION- 3

Answer any six from the following. Each question carries 4 marks

23) Evaluate $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$, where C is a piece wise smooth closed curve oriented counter clockwise such that C encloses the origin
24) let σ be the portion of the surface $z=1-x^{2}-y^{2}$ that lies above the xy-plane and suppose σ is oriented up. Find the flux of the vector field $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xi}+\mathrm{y} j+\mathrm{zk}$ across σ
25) The temperature at a point (x, y, z) in a metal sheet is $T(x, y, z)=\frac{x y z}{1+x^{2}+y^{2}+z^{2}}$. Find the rate of change of temperature with respect to distance at ($1,1,1$) in the direction of the origin
26) Find the mass of a thin wire shaped in the form of a circular arc $y=\sqrt{9-x^{2}}, 0 \leq x \leq 3$ if the density function is $\delta(x, y)=x \sqrt{y}$
27) Show that the line integral $\int_{C} y \sin x d x-\cos x d y$ is independent of the path and hence evaluate $\int_{(0,1)}^{(\pi,-1)} y \sin x d x-\cos y d y$
28) Using Green's theorem find the work done by the force field
$F(x, y)=\left(e^{x}-y^{3}\right) i+\left(\cos y+x^{3}\right) j$
29) Suppose that a curved lamina σ with constant density $\delta(x, y, z)=1$ is the portion of the paraboloid $z=x^{2}+y^{2}$ below thw plane $z=1$. Find the mass of the lamina
30) Use divergence theorem to find the outward flux of the vector field $F(x, y, z)=2 x i+3 y j+z^{2} k$ across the unit cube bounded by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0$, $\mathrm{y}=1, \mathrm{z}=0$, and $\mathrm{z}=1$.
31) Using Stoke's Theorem, evaluate $\int_{C} F . d r$, where $F(x, y, z)=z^{2} i+2 x j-y^{3} k, \mathrm{C}$ is the circle $x^{2}+y^{2}=1$ in the $x y$ - plane with counter clock-wise orientation looking down the $z-$ axis.

SECTION -4

Answer any two from the following. Each question carries 15 marks

32) Prove that
a) $\operatorname{div}(\varphi F)=\varphi \operatorname{div} F+\nabla \phi \cdot F$
b) $\operatorname{curl}(\varphi F)=\varphi c u r l F+\nabla \phi \times F$
33) Verify divergence theorem for the function $F(x, y, z)=x i+y j+z k$, where σ is the spherical surface $x^{2}+y^{2}+z^{2}=1$
34)

a) Let $T(x, y)=10-8 x^{2}-2 y^{2}$. Find the maximum value of a directional derivative at $(2,3)$. Also find the unit vector in the direction in which the maximum value occurs.
b) A heat seeking particle is located at the point $(2,3)$ in a flat metal plate whose temperature at a point (x, y) is $T(x, y)=10-8 x^{2}-2 y^{2}$. Find an equation of the trajectory of the particle if it moves continuously in the direction of maximum temperature increase.
35) Verify Stoke's Theorem for the vector field $F(x, y, z)=2 z i+2 x j+5 y k$ taking σ to be the portion of the paraboloid $z=4-x^{2}-y^{2}$ for which $z \geq 0$ with up ward orientation, and C to be positively oriented circle $x^{2}+y^{2}=4$ that forms the boundary of σ in the xy plane.

