University of Kerala

First degree programme in Mathematics

Fifth Semester B.Sc. Degree model questions

COMPLEX ANALYSIS
MM 1542
(2014 Admissions onwards)

Time: 3 Hours
Max. Marks: 80

All the first 10 questions are compulsory. They carry 1 mark each .

1. Express $\frac{(4-i)(3+i)}{(2-i)}$ in the form $a+i b$
2. Find the square root of $4 i$
3. Show that $|z|^{2}=z z^{-}$.
4. Find the radius of convergence of the series $\sum_{n=0}^{\infty} z^{n^{2}}$
5. If $z=x+i y$, find $\left|e^{z}\right|$
6. State rectangle theorem.
7.Express $3+2 i$ in polar form .
7. Write an example for a Cauchy sequence in Complex plane .
8. Let $\left\{z: z=z^{-}\right\}$. What is it geometrically means ?
10.Write the power series representation of e^{z}.

Answer any $\mathbf{8}$ questions from among the questions $\mathbf{1 1}$ to $\mathbf{2 2}$. These questions carry 2 marks each.
11. Find the sum of complex numbers $3+2 i$ and $1+i$ geometrically.
12. Find the cube roots of unity.
13. Prove that $\left\{z_{n}\right\}$ converges if and only if $\left\{z_{n}\right\}$ is a Cauchy Sequence.
14. Using Cauchy Riemann equation, verify $-x^{2}+y^{2}-2 x y i$ is analytic.
15. Find the radius of convergence of. Is the series $\sum(1 / 2)^{n}$ converge or diverge. Justify your answer.
16. Prove that f is constant if $f=u+i v$ is analytic in a region D and u is Constant.
17. Let $f(z)=\frac{1}{z}$ and $C: z(t)=R$ cost $+i R \sin t, 0 \leq t \leq 2 \pi, R \neq 0$. Then Find $\int_{c} f(z) d z$.
18. Evaluate $\int_{c} f(z) d z$ where $f(z)=x^{2}+y^{2}$ and C is $z(t)=t^{2}+i t^{2}$ $0 \leq t \leq 1$.
19. Solve $x^{3}+4 x+2$ by Cubic Method.
20. Is the polynomial $x^{2}+y^{2}-2 x i y$ is analytic. Justify your answer.
21. Suppose C is given by $z(t), a \leq t \leq b$. Then prove that

$$
\int_{c} f=\int_{c} f
$$

22. Let $f(z)=|z|^{2}$. Is f differentiable at $z=0$. Justify.

Answer any 6 questions from the questions 23 to 31 . These questions carry 4 marks each.
23. Geometrically represent the following sets.
a) $\{z:-\theta<\arg z<\theta\}$.
b) $\{z:|\operatorname{Arg} z-\pi / 2|<\pi / 2\}$.
24. Prove that $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$ and interpret the Result geometrically.
25. Prove that if a polynomial $P(x, y)$ is analytic if and only if $P_{x}=i P_{y}$.
26. State and prove uniqueness theorem for power series.
27. Suppose f is derivative of an analytic function F - that is $f(z)=F^{\prime}(z)$ Where F is analytic on the smooth curve C.

Then $\int_{c} f(z) d z=F(z(b))-F(z(a))$.
28. a) Evaluate $\int_{c}(z-i) d z$ where c is the parabolic segment $z(t)=t+i t^{2}$ $-1 \leq t \leq 1$.
b) Also find the above integral along the straight line $-1+i$ to $1+i$.
29. Let C be a smooth curve ; let f and g be continuous function on C ; and Let α be any complex number. Then
a) $\int_{c}(f(z)+g(z)) d z=\int_{c}\left(f(z) d z+\int_{c} g(z)\right) d z$.
b) $\int_{c} \alpha f(z) d z=\alpha \int_{c}(f(z)$.
30. Verify the following identities
a) $\sin 2 z=2 \sin z \cos z$.
b) $\sin ^{2} z+\cos ^{2} z=1$.
31. Is the following polynomials are analytic. Verify
a) $P(x, y)=x^{3}-3 x y^{2}-x+i\left(3 x^{2}-y^{3}-y\right)$
b) $P(x, y)=2 x y+i\left(y^{2}-x^{2}\right)$.
($6 \times 4=24$ marks)

Answer any $\mathbf{2}$ questions from among the questions $\mathbf{3 2}$ to $\mathbf{3 5}$. These questions carry 15 marks each.
32. a) Suppose that $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ converges for $|z|<R$. Then $f(z)^{\prime}$ exists And equals $\sum_{n=0}^{\infty} n c_{n} z^{n-1}$ throughout $|z|<R$.
b) The power series are infinitely differentiable within their domain of Convergence
33. a) If $f=u+i v$ is differentiable at Z, f_{x} and f_{y} exists there and satisfy the

Cauchy Riemann equation $f_{y}=i f_{x}$.
b) Is the converse of the above statement is true. Justify your answer.
c) Show that $f(z)=\operatorname{Rez}$ is nowhere differentiable.
34. a) Suppose f is entire and Γ is the boundary of a rectangle R .

Then $\int_{\Gamma} f(z) d z=0$.
b) State and prove integral theorem.
35. a) Suppose $G(t)$ is a continuous complex- valued function of t. Then $\int_{a}^{b} G(t) d t \ll \int_{a}^{b}|G(t)| d t$.
b) Suppose that C is a smooth curve of length L , that f is continuous on C , and that $f \ll M$ throughout C . Then $\int_{C} f(z) \ll M L$.

