KERALA UNIVERSITY Model Question Paper- M. Sc. Examination 2020 admission onwards Branch : Mathematics MM 231 COMPLEX ANALYSIS

Time: 3 hours

Max. Marks:75

Part A Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

- 1. Define bounded variation of a complex function f and give an example of a function which is of bounded variation. Also define total variation.
- 2. Define absolute convergence of a series. Show that absolute convergence implies convergence.
- 3. Define an entire function and give an example. Also
define index of a curve γ with respect to a point
 a.
- 4. Show that FEP homotopic is an equivalence relation.
- 5. Define different types of isolated singularities and give examples for each.
- 6. Define maximum principle an state first version of maximum Modulus theorem.
- 7. Evaluae $\frac{1}{2\pi i} \int_{\gamma} \frac{2z+1}{z^2+z+1} dz$, where γ is the circle |z| = 4
- 8. Define Mobius transformation. Also show that a Mobius transformation has at most two fixed pionts. . $5\times 3 = 15$

Part B Answer all questions from 9 to 13 Each question carries 12 marks

9. .

A. .

a. If $\sum a_n(z-a0^n)$ is a given power series with radius of convergence R, then prove that $r = \lim \left|\frac{a_n}{a_{n+1}}\right|$ if the limit exists.

b. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$

OR

B. a. Dfine a smooth function. If $\gamma : [a, b] \to \mathbb{C}$ is piecewise smooth, prove that γ is of bounded variation and $v(\gamma) = \int_{a}^{b} |\gamma'(t0|dt.$

b. Find $\int_{\gamma} z^{-\frac{1}{2}} dz$ where γ is the upper half of the unit circle from 1 to -1.

A. a. Let
$$\phi : [a,b] \times [c,d] \to \mathbb{C}$$
 be a continuous function and define $g : [c,d] \to \mathbb{C}$
by $g(t) = \int_a^b \phi(s,t) ds$. Prove that g is continuous. Also show that if $\frac{\partial \phi}{\partial t}$ exists
and is continuous on $[a,b] \times [c,d]$ then g is continuously differentiable and $g'(t) = \int_a^b \frac{\partial}{\partial t} \phi(s,t) ds$

OR

- B. a. State ans prove Liouvilli's theorem.
 - b. Let f and g be two analytic functions on a region G. Prove that $f \equiv g$ if and only if $\{z \in G : f(z) = g(z)\}$ has a limit point in G

11. .

A. a. Let γ be a rectifiable curve and suppose π is a function defined and continuous on {γ} and for each m ≥ 1, let F_m(z) = ∫_γ φ(w)(w - z)^{-m}dw for each z ∉ {γ}. Prove that each F_m is analytic on C - {γ} and F'_m(z) = mF_{m+1}(z).
b. Find ∫_γ z² + 1/z² - 1 dz where γ is the circle |z - 1| = 1

OR

- B. a. State and prove Morera's theorem.
 - b. Let G be an open set which is a-star shaped. If γ_0 is the curve which is constantly equal to a then prove that every closed rectifiable curve in G is homotopic to γ_0

12. .

A. a. Derive Laurent series development of an analytic function in the $ann(a, R_1, R_2)$

OR

- B. a. State and prove Casorati-Weirstrass theorem.
 - b. State and prove Rouche's theorem.

13. .

- A. a. State and prove Schwarz's lemma.
 - b. State and prove Maximum modulus theorem third version.

OR

B. a. Prove that a mobius transformation takes circles to circlesb. State and prove Orientation principle.

 $5 \times 12 = 60$