KERALA UNIVERSITY

First semester MSc Degree Exmanation

Model Question Paper: Branch - Mathematics MM-213:Ordinary Differntial Equations
(2020 Admission onwards)
Time: 3 hours
Max. Marks:75

Part A

Answer any 5 questions from among the questions 1 to 8 Each question carries 3 marks

1. Show that $f(x, y)=x y^{2}$ satisfies a Lipschitz condition on any rectangle $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{y} \leq \mathrm{d}$
2. What are regular singular points of the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$. Find the regular singular points of $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0$
3. Show that $(1+x)^{p}$ is the hyper geometric series $F(-p, b, b,-x)$
4. Write the Rodrigues formula for $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$. Also find $\mathrm{P}_{2}(\mathrm{x})$ and $\mathrm{P}_{3}(\mathrm{x})$.
5. Show that $\left\{\begin{array}{l}x=e^{4 t} \\ y=e^{4 t}\end{array}\right.$ and $\left\{\begin{array}{c}x=e^{-2 t} \\ y=-e^{-2 t}\end{array}\right.$ are solutions of the homogenous system $\left\{\begin{array}{l}\frac{d x}{d t}=x+3 y \\ \frac{d y}{d t}=3 x+y\end{array}\right.$
6. If $\mathrm{W}(\mathrm{t})$ is the Wronskian of the two solutions $\left\{\begin{array}{l}x=x_{1}(t) \\ y=y_{1}(t)\end{array}\right.$ and $\left\{\begin{array}{l}x=x_{2}(t) \\ y=y_{2}(t)\end{array}\right.$ of the homogenous system $\left\{\begin{array}{l}\frac{d x}{d t}=a_{1}(t)+b_{1}(t) y \\ \frac{d y}{d t}=a_{2}(t)+b_{2}(t) y\end{array} \quad\right.$, prove that $\mathrm{W}(\mathrm{t})$ is either identically zero or nowhere zero on [a,b]
7. Define (a) Saddle point (b) Center, of a nonlinear differential equation.
8. Prove that the function $\mathrm{E}(\mathrm{x}, \mathrm{y})=\mathrm{ax}^{2}+\mathrm{bxy}+\mathrm{cy}^{2}$ is positive definite if and only if $\mathrm{a}>0$ and $\mathrm{b}^{2}-4 \mathrm{ac}<0$ and negative definite if and only if $\mathrm{a}<0$ and $\mathrm{b}^{2}-4 \mathrm{ac}<0$

Part B
 Answer all questions from 9 to 13 Each question carries 12 marks

9. A (a) Solve $y^{\prime}=y^{2}, y(0)=1$, using Picard's method starting with $y_{0}(x)=1$ and by calculating $\mathrm{y}_{1}(\mathrm{x}), \mathrm{y}_{2}(\mathrm{x})$ and $\mathrm{y}_{3}(\mathrm{x})$
(b) Let x_{0} be an ordinary point the differential equation $y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0$. Show that there exist a unique function $\mathrm{y}(\mathrm{x})$ analytic at x_{0}, which is a solution of the differential equation satisfying $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{a}_{0}$ and $\mathrm{y}^{\prime}\left(\mathrm{x}_{0}\right)=\mathrm{a}_{1}$

OR

B (a) State Picard's theorem and use this to solve a system of first order equations

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=f(x, y, z), y\left(\mathrm{x}_{0}\right)=\mathrm{y}_{\mathrm{o}} \tag{6marks}\\
\frac{d z}{d x}=g(x, y, z), z\left(\mathrm{x}_{0}\right)=\mathrm{x}_{\mathrm{o}}
\end{array}\right.
$$

(b) Find the indicial equation and its roots of

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0 \tag{6marks}
\end{equation*}
$$

OR

10. A (a) Consider the Chebyshev's equation ($1-x^{2}$) $y^{\prime \prime}-x y^{\prime}+p^{2} y=0$, where p is a non negative constant. Transform it to a hyper geometric equatio by replacing x by $\mathrm{t}=\frac{(1-x)}{2}$ and hence find its general solution near $\mathrm{x}=1$
(7 marks)
(b) If $\frac{1}{\sqrt{1-2 x t+t^{2}}}=\mathrm{p}_{0}(\mathrm{x})+\mathrm{p}_{1}(\mathrm{x}) \mathrm{t}+\mathrm{p}_{2}(\mathrm{x}) \mathrm{t}^{2}+\ldots+\mathrm{p}_{\mathrm{n}}(\mathrm{x}) \mathrm{t}^{\mathrm{n}}+\ldots$ show that $\mathrm{p}_{\mathrm{n}}(1)=\mathrm{p}_{\mathrm{n}}(-1)=(-1)^{\mathrm{n}}$ and $\mathrm{p}_{2 \mathrm{n}+1}(0)=0$

OR

B (a) Determine the nature of the point $\mathrm{x}=\infty$ for the Bessel's equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \tag{6marks}
\end{equation*}
$$

(b) Prove the Orthogonality properties of Legendre polynomials
11. A (a) Solve the Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$ and find the Bessel function of the first kind of order p
(8marks)
(b) Prove that $\frac{d\left[x^{p} J_{p}(x)\right]}{d x}=\mathrm{x}^{\mathrm{p}} \mathrm{J}_{\mathrm{p}-1}(\mathrm{x})$
(4marks)

OR

B (a) Define the gamma function $\Gamma(p)$ and show that $\Gamma(p+1)=p \Gamma(p)$
(4marks)
(b) Prove the orthogonality properties of Bessel's function
12. A (a) Solve $\left\{\begin{array}{l}\frac{d x}{d t}=x+y \\ \frac{d y}{d t}=4 x-2 y\end{array}\right.$
(b) If the two solutions $\left\{\begin{array}{l}x=x_{1}(t) \\ y=y_{1}(t)\end{array}\right.$ and $\left\{\begin{array}{l}x=x_{2}(t) \\ y=y_{2}(t)\end{array}\right.$ have a Wronskian $\mathrm{W}(\mathrm{t})$ that does not vanish on (a, b), then show that $\left\{\begin{array}{l}x=c_{1} x_{1}(t)+c_{2} x_{2}(t) \\ y=c_{1} y_{1}(t)+c_{2} y_{2}(t)\end{array}\right.$ is the general solution of

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \tag{6marks}\\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right.
$$

OR

B (a) Show that $\left\{\begin{array}{c}x=3 t-2 \\ y=-2 t+3\end{array}\right.$ is a particular solution of the non homogenous system
$\left\{\begin{array}{l}\frac{d x}{d t}=x+2 y+t-1 \\ \frac{d y}{d t}=3 x+2 y-5 t-2\end{array}\right.$. Also write the general solution of this system
(b) Find the Wronskian of $x_{1}(t)=e^{t} \cos (t), x_{2}(t)=e^{-t} \cos (t), y_{1}(t)=e^{-t} \sin (t)$, $y_{2}(t)=e^{t} \sin (t)$
13. A (a) Prove that the critical point $(0,0)$ of the linear system $\left\{\begin{array}{l}\frac{d x}{d t}=a_{1} x+b_{1} y \\ \frac{d y}{d t}=a_{2} x+b_{2} y\end{array}\right.$ is stable if and only if both roots of the auxiliary equation $\mathrm{m}^{2}-\left(a_{1}+b_{2}\right) m+\left(a_{1} b_{2}-a_{2} b_{1}\right)=0$ have non positive real parts, and it is asymptotically stable if and only if both roots have negative real parts
(8marks)
(b) Prove that the critical point $(0,0)$ of the linear system $\left\{\begin{array}{l}\frac{d x}{d t}=a_{1} x+b_{1} y \\ \frac{d y}{d t}=a_{2} x+b_{2} y\end{array}\right.$ is asymptotically stable if and only if the coefficient $\mathrm{p}=-\left(a_{1}+b_{2}\right)$ and $\mathrm{q}=a_{1} b_{2}-a_{2} b_{1}$ of the auxiliary equation $\mathrm{m}^{2}-\left(a_{1}+b_{2}\right) m+\left(a_{1} b_{2}-a_{2} b_{1}\right)=0$ are both positive

OR

B (a) Prove that if the critical point $(0,0)$ of $\left\{\begin{array}{l}\frac{d x}{d t}=a_{1} x+b_{1} y \\ \frac{d y}{d t}=a_{2} x+b_{2} y\end{array} \quad\right.$ is asymptotically stable then the critical point $(0,0)$ of the non linear system
$\left\{\begin{array}{l}\frac{d x}{d t}=a_{1} x+b_{1} y+f(x, y) \\ \frac{d x}{d t}=a_{2} x+b_{2} y+g(x, y)\end{array}\right.$ is asymptotically stable

