Fourth Semester B.Tech Degree Examination (2013 scheme)
 13.401: Engineering Mathematics III (U)
 MODEL QUESTION PAPER

Time: 3 hours
MAXIMUM MARKS: 100

PART A

Answer all questions. Each question carries 4 marks

1. Prove that an analytical function with a constant argument is constant
2. Define critical point and invariant point of a transformation. Find the critical points and invariant points of $W=\frac{1}{z}$
3. Evaluate $\int_{0}|z|=1$, where c is the last half of the unit circle $|z|=1$ from $\mathrm{z}=-\mathrm{i}$ to $\mathrm{z}=+\mathrm{i}$
4. Using Newton Ralphson method, find the real root of $x \log _{10} x=1.2$, correct to 3 decimal places. Given that it is near to 2 .
5. Using Taylor's series method, obtain the solution of $\frac{a y}{d x}=3 x+y^{2}$. Given that y $(0)=1$. Also find the value of y for $x=0.1$, correct to 4 places of decimals.

PART B

Answer 1 full question from each module. Each question carries 20 marks.

Module I

6. A) show that the function $f(z)=\frac{x^{5} y(y-i x)}{x^{6}+y^{2}}$ for $z \neq 0$, even though Cauchy - Riemann equations are satisfied at $\mathrm{z}=0$
B) Find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$, where $u+v-\frac{x}{x^{2}+y^{2}}$
C) Discuss the transformation $w=e^{x}$
7. A) If $\mathrm{f}(\mathrm{z})$ is an analytic function of z , prove that $\left(\frac{\partial^{\mathrm{a}}}{\partial x^{2}}+\frac{\partial^{\mathrm{x}}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
B) Show that $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is harmonic. Find its harmonic conjugate and hence find the corresponding analytic $f(z)=u+i v$
C) Find the bilinear transformation which maps the points $\mathrm{z}=1, \mathrm{i},-1$ into the points $\mathrm{w}=$ i, 0 ,-i respectively. Also find the image of $|z|<\mathbf{1}$, under this transformation.

Module II

8. A) Using Cauchy's integral formula evaluate $\int_{0} \frac{\cos \pi z^{2}+\sin \pi z^{2}}{(z-1)(z-2)} d z$ where c is the circle $|z|=3$
B) Obtain the Laurent's series expansion of $\frac{\gamma z-2}{z(z+1)(z+2)}$ in the region $1<|z+1|<3$
C) Evaluate $\int_{0}^{\infty} \frac{1}{\left(a^{2}+x^{2}\right)^{2}} d x$
9. A) Find the nature and location of singularities of the function i) $f(z)=\frac{i}{\operatorname{sen} m}$
ii) $\mathrm{f}(\mathrm{z})=z^{4} e^{\frac{1}{z}}$
B) Show that $\int_{0}^{2 \pi} \cos _{5+4 \cos 2 \theta} d \theta=\frac{\pi}{6}$
C) Show that $\int_{0}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x=\frac{\pi}{2} e^{-a}$

Module III

10. A) Find the real root of the equation $x^{3}-4 x-9=0$ which lies between 2 and 3 , by

Regula falsi method
B) Solve by Gauss-Seidel iteration method

$$
10 x-2 y+z=12 ; x+9 y-z=10 ; 2 x-y+11 z=20
$$

C) Use Lagrange's interpolation formula to find $\mathrm{f}(1)$, from the following data

$\mathrm{x}:-1$	0	2	3
$\mathrm{y}:-8$	3	1	2

11. A) Using bisection method, find the root of the equation $e^{x}-x=2$ lying between 1 and 1.4 correct to five places of decimals
B) The population of a town is given below

Year x: $19411951 \quad 1961 \quad 1971 \quad 1981 \quad 1991$
Population in lakhs y: $20 \quad 24 \quad 29 \quad 36 \quad 46 \quad 51$
Estimate the population increase during 1946 to 1976 by Newton's interpolation formula
C) Solve by Gauss elimination method
$x-y+3 z-3 w=3 ; 2 x+3 y+z-11 w=1$;
$5 x-2 y+5 z-4 w=5 ; 3 x+4 y-7 z+2 w=-7$

Module IV

12. A) Find the value of $\int_{0}^{1 / 2} \frac{1}{\sqrt{1-x^{2}}} d x$ using
i) Trapezoidal rule
ii) Simpson's rule, by taking $h=\frac{1}{12}$
B) Apply Runge-Kutta method to find an approximate value of y when $\mathrm{x}=0.7$; Given that $\frac{d y}{d x}=y-x^{2}$ and $\mathrm{y}(0.6)=1.7379$
C) Using Euler's method find an approximate value of y corresponding to $\mathrm{x}=1$, Given that $\frac{d y}{d x}=x+y$ and $\mathrm{y}(0)=1$. Take $\mathrm{h}=0.25$
13. A) Solve Laplace's equation $u_{x x}+u_{y y}=0$ satisfying the following conditions $\mathrm{u}(0, \mathrm{y})=0 ; \mathrm{u}(3, \mathrm{y})=8+2 \mathrm{y}, \quad$ for $0 \leq y \leq 3$ $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}^{2}, \mathrm{u}(\mathrm{x}, 3)=3 \mathrm{x}^{2}, \quad$ for $0 \leq x \leq 3$
B) Using modified Euler's method obtain the values of $y(0.1)$ and $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x}$, giventhat $\mathrm{y}=1$ when $\mathrm{x}=0$;
